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ABSTRACT 

Aft-end ignition exper iments  with heated a i r  s imulat ion of solid pro- 
pellant  exhaust  w e r e  conducted to de te rmine  the post-ignit ion in teract ions  
between ign i te r  and m a i n  mo to r  flow. The  opposed, super  sonic,  confined 
flows exhibited bimodal behavior,  each  mode having dist inctly different  main  
motor  unblocking charac te r i s t i cs .  P rev ious ly  r epo r t ed  s eve re  oscil lat ions 
resu l ted  f r o m  unstable separa t ion  of the over  expanded igni ter  nozzle flow, 
principally due to a l ternat ion between the two separa t ion  flow field s t ruc tu r e s  
which charac te r ized  each  mode.  Use of a slotted ign i te r  nozzle success fu l ly  
modified the amplitude of the oscil lat ions and the conditions under which the 
osci l la t ions  occur red .  Flow field analyses  w e r e  conducted to a id  i n  exper i -  
menta l  data  evaluation and i n  development of design c r i t e r i a .  
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1 . 0  SUMMARY 

During a previous  study of the aft-end ignit ion of solid-propellant mo to r s  
(NASA CR-72447), s e v e r e  oscil lat ions i n  the in te rac t ion  between the motor  
flow and the overexpanded ign i te r  flow w e r e  discovered to ex i s t  during the post-  
ignit ion per iod.  Nine aft-end ignition t e s t s  of a subscale  (5.  0 inch,  0.  127  m, 
dia  th roa t )  model of the 260 inch  (6 .  6 m )  d iamete r  solid booster  a l l  exhibited 
such  behavior ,  which resu l ted  i n  large-ampli tude fluctuations i n  the motor  
nozzle wal l  p r e s s u r e  distr ibution.  F u r t h e r m o r e ,  the oscil lat ions appeared  to 
provoke e r r a t i c  and random unblocking and r eblocking of the motor  throat ,  thus 
leading to in te rmi t ten t  o v e r p r e s  s u r e s  i n  the motor  chamber .  The  osci l la t ions  
w e r e  believed to b e  d i rec t ly  produced by  unstable separa t ion  of the over  expanded 
igni ter  nozzle flow. 

The  purpose of this p r o g r a m  was to exper imental ly  examine the osc i l -  
la t ions ,  develop techniques to reduce  o r  e l iminate  the osci l la t ions ,  and modify  
exist ing analytical  models  to incorpora te  the r e su l t s  of the study. Design 
c r i t e r i a  w e r e  to be  developed to provide fo r  se lect ion of c r i t i ca l  design p a r a m -  
e t e r s  which would r e su l t  i n  pos t-ignition operat ion without oscil lat ions o r  over - 
p r e s s u r e s ,  while p rese rv ing  those  conditions which produce sa t i s fac tory  ignition, 

To  achieve these  objectives,  approximately 120 t e s t s  w e r e  conducted of 
the aft-end post-ignition behavior,  using heated a i r  to s imula te  a solid- 
propellant  exhaust. The  c losed connected-pipe t es t  sect ion was  constructed 
to duplicate, i n  subscale ,  the c r i t i ca l  f e a tu r e s  of the rocket  motor  and igniter  
u sed  i n  the previous p rog ram,  and was  incorporated into the Stanford Uni- 
ve r s i t y  Hyper sonic Wind Tunnel. This  facil i ty includes a h igh -p re s sn j~e  a i r  - 
s t o r a g e  ve s se l ,  gas - f i red  pebble-bed hea te r ,  and sound-suppress ion exhaust  
tower. The  tes t  motor  nozzle ( 3 .  0 inch,  0. 0763 m. throat  d i ame te r )  and 
ign i te r  nozzle w e r e  f i t ted with numerous  s ta t ic-pressure  taps.  

F ive  bas ic  igni ter  nozzle models  w e r e  tes ted at var ious  axial  locations 
within the motor  nozzle, over  a wide span of igni ter  to motor  chamber  p r e s  - 
s u r e  ra t ios .  T e s t s  w e r e  conducted with igni ter  both aligned and misal igned 
axially,  and with the igni ter  a t  f a r - a f t  conditions to s imula te  booster  lift-off, 
Additionally, s eve ra l  techniques w e r e  tes ted to s tabi l ize  the igni ter  nozzle 
over  expanded flow separation.  

Analytical models  of the flow fields w e r e  developed to aid i n  dat:a evalu- 
at ion and to support  the generat ion of design c r i t e r i a .  The  existing blockage 
model  was  slightly modified. 

The  r e su l t s  of the test ing and data  evaluation c l ea r ly  showed the exis t -  
ence  of two dist inctly different types of igni ter-nozzle  flow-field s t ruc tures , ,  
T h e  f i r s t ,  Mode A, occu r r ed  a t  re la t ively  high igni ter  to motor  chamber  
p r e s s u r e  r a t i o s  ( P R ) ,  when the igni ter  flow was  under expanded o r  modera te ly  
overexpanded. Mode B exis ted a t  lower chamber  p r e s s u r e  r a t i o s  when the 



d e g r e e  of g n i t e r  flow overexpansion was  m o r e  s eve re .  Mode A was  a  s table  
flow s t ruc tu r e ,  and although Mode B tended to b e  unstable ,  each  exhibited 
r egu l a r  and wel l -o rdered  motor  throat-unblocking cha rac t e r i s t i c s .  

The s e v e r e  flow-field osci l la t ions  w e r e  observed  to r e s u l t  f r o m  abrupt  
shifting of the flow field between Modes A and B when the ign i te r  nozzle sep-  
a ra t ion  reached  a  c r i t i c a l  posit ion during the decay of the chamber  p r e s s u r e  
ra t io .  Depending upon ign i te r  location,  the onset  of osci l la t ions  produced 
in te rmi t t en t  reblocking of the motor  throat .  One technique, an  igni ter  nozzle 
which was  deeply slot ted i n  the region of the unstable separat ion,  w a s  succe s -  
fu l  in  reducing and, i n  s o m e  c a s e s ,  el iminating the osc i l l a to ry  behavior .  

Within the en t i r e  r ange  of igni ter  to motor  chamber  p r e s s u r e  r a t i o ,  P R ,  
and igni ter  p lacement ,  t he r e  w e r e  s e v e r a l  regions  of s table  o r  unstable ,  blocked 
o r  unblocked flow. One well-defined reg ion  ex i s t s ,  however ,  of s table ,  un- 
blocked flow. Post - igni t ion operat ion of the sy s  t em  i n  this  region can  be  
achieved by p roper  se lect ion of the chamber  p r e s s u r e  r a t i o  and igni ter  p lace-  
ment .  Thus ,  osci l la t ions  and motor  o v e r p r e s s u r e  can  be  avoided, without 
compromising sa t i s fac to ry  ignit ion of the mo to r .  An example  p rob l em i s  used  
to i l l u s t r a t e  the recommended  approach i n  the applicat ion of the aft-end ign i te r  
des ign c r i t e r i a  which w e r e  developed. 



2 . 0  INTRODUCTION 

Under Contract  NAS 3-10297, CETEC Corporat ion conducted a n  experi- 
menta l  and analytical  p r o g r a m  to study and cha rac t e r i ze  s e v e r a l  specific 

1 f ea tu r e s  of the aft-end ignition of solid-propellant mo to r s  . Unexpected 
s e v e r e  flow-field and s t a t i c -p r e s su re  oscil lat ions w e r e  discovered.  This  
l e d  to the efforts  r epo r t ed  herein ,  to m o r e  fully cha rac t e r i ze  and to control  
these  oscil lat ions while p rese rv ing  the gasdynamical  and geomet r ic  condi- 
tions which r e s u l t  i n  sa t i s fac tory  ignition with no motor  o v e r p r e s s u r e .  

Head-end ignition sy s t ems ,  both pyrotechnic and pyrogen,  have been 
favored  i n  the pas t  over  aft-end sys t ems2  and have pe r fo rmed  sat is factor i ly  
i n  m o s t  c a s e s .  However,  i n  many  ins tances  aft-end pyrogen i gn i t e r s  a r e  
super io r  i n  s eve ra l  r e spec t s ,  owing to thei r  separa t ion  f r o m  the ma in  motor :  
i n c r e a s e d  re l iabi l i ty  through redundancy and design conserva t i sm;  mo to r  c a s e  
and g ra in  head- end design flexibility; reduction i n  s tage weight. However,  
two potential  p rob lems  have long been  known to exis t :  long ignition ir i tervals 
and poss ible  o v e r p r e s s u r e  of the motor  through aerodynamic blockage of the 
moto r  throat .  E a r l i e r  work3,  4 7  5s 6,  has  shown that  these  p rob lems  can  
b e  s e v e r e ,  but that they can  be  avoided by p rope r  design of the ignition system.  

The  difficulties of ejecting an  igni ter  s y s t e m  to prevent  ove rp re s  s u r  e s  
of a pad-launched booster  sy s t em such  a s  the 260 inch  ( 6 . 6  m )  solid booster  
a r e  considerable .  Consequently the previous p rog ram1  was  under taken,  
l a rge ly  i n  support  of the L a r g e  Solid Booster  P r o g r a m ,  to develop design 
c r i t e r i a  f o r  aft-end pyrogen ignition sy s t ems  which would provide s a t i s -  
f a c to ry  ignition without ove rp re s su re s .  In  that p r o g r a m  nine hot-fir ing tes t s  
w e r e  conducted of a subscale  model  of the 260 inch  (6 .6  m )  motor  and g ra in  
(5. 0 inch,  0. 127 m, dia throat ,  56 inch,  1 .42 m, g r a i n  length  including 8- 
point head-end s t a r ) ,  and an  analytical  model  was  developed to p red ic t  con- 
ditons under  which the motor  throat  i s  blocked. In each  of the nine t e s t s ,  
s e v e r e  oscil lat ions existed i n  the in teract ions  i n  the motor  nozzle between 
the  opposed igni ter  and ma in  flows. These  resu l ted  i n  ma jo r  fluctuations i n  
the p r e s s u r e  loads  on the nozzle and usual ly  produced in te rmi t ten t  blocking 
and unblocking of the motor  throat .  These  oscil lat ions w e r e  believed to b e  
produced by  inherent  instabil i ty i n  the separa t ion  of the highly overexpanded 
igni ter  flow. During the post-  contract  period,  additional study revea led  the 
exis tence of a t  l e a s t  two dist inctly different flow-field s t ruc tu r e s ,  one of which 
was  general ly  unstable,  while the other  appeared to be  s table  over  a wide range 
of conditions. The  evidence indicated that the mos t  s e v e r e  fluctuations occur red  
when the flow a l te rna ted  between the two flow f ie lds .  

This  p r o g r a m  was  under taken to identify the or igins ,  to cha rac t e r i ze ,  
and to develop methods of control  of the osci l la t ions ,  through a combined 
exper imental  and analytical  effort.  In the i n t e r e s t  of flexibility and economy, 
the t e s t s  w e r e  conducted using heated a i r  i n  an  especia l ly  const ructed apparatus  
i n  the Stanford Universi ty Hyper sonic Wind Tunnel Faci l i ty .  Approximately 
120 r e c o r d  tes t s  w e r e  conducted with di f ferent  igni ter  mode ls ,  both aligned 



a n d  r r~isa l igned.  Based  upon the tes t  r e s u l t s ,  the or ig inal  blockage model was  
modified, a new blockage model  was  developed fo r  the a l t e rna te  flow f ie ld ,  
a n d  development of a  model  to p red ic t  the onset  of osci l la t ion was  a t tempted.  



3 .0  TECHNICAL ACTIVITIES 

The purpose of the p r o g r a m  r epo r t ed  he re in  was  to develop aft-end 
ign i te r  design c r i t e r i a  suitable fo r  260-inch-diameter type of sol id-rocket  
m o t o r s ,  through a combined exper imental /analyt ical  approach satisfying 
the following objectives;  

(1 )  Charac te r iza t ion  of the motor-nozzle exit-cone oscil lat ions a n d  
thei r  causes .  

( 2 )  Development of techniques to control  o r  e l iminate  the osc i l -  
lat ions.  

( 3 )  Evaluation of the effects of igni ter  misal ignment  and with.. 
d rawal  (simulation of motor  lift-off during igni ter  operat ion) .  

(4) Modification of analytical  models  to predic t  unblocking and 
onset  of oscil lat ions.  

T h e s e  objectives w e r e  to b e  achieved by exper imental  study of the  gas -  
dynamical  in te rac t ions  between the igni ter  and ma in  motor  flows i n  a heated- 
a i r  s imulat ion of the significant events (cal led cold flow i n  con t r a s t  to the 
hot f i r ings  using l ive  propel lants) .  The  facil i ty u sed  was  the high-pi: e s  sup e 
a i r - s to rage  sy s  tem,  pebble-bed hea te r ,  and sound-suppress ion exhaust 
tower of the Hypersonic  Wind Tunnel Faci l i ty  of the Depar tment  of Aero- 
nautics and Astronaut ics  of Leland Stanford Junior Universi ty.  

The  p r o g r a m  was  compr i sed  of the following technical  work  tasks :  

( 1 )  Design and fabr icat ion of the t es t  apparatus  featur ing a high 
deg ree  of flexibility to provide for  a wide range  of t es t  and 
ins t rumentat ion conditions and configurations. 

(2 )  Cold-flow test ing of approximately 120 r e c o r d  t e s t s ,  including 
t e s t s  a t  varying posit ions and flow conditions of f ive bas ic  
ign i te r  nozzle configurations; s eve ra l  modifications to one of 
these  models  to control  the oscil lat ions;  misal ignment  ( l a t e r a l ,  
angular ,  and combined) and lift-off simulation.  

( 3 )  Evaluation of the t es t  data and development of analytical  model  
modifications to predic t  the r a t i o s  between ign i te r  and motor  
total p r e s s u r e  fo r  which unblocking of the mo to r  throat  and onset  
of oscil lat ions occur  fo r  given ign i te r  configurations and positior-es, 
The  a i m  of this  t ask  was  to develop models  having sufficient gen- 
e r a l i t y  to accommodate  sy s t ems  with var iab le  gas  p rope r t i e s ,  and 
both conical  and contoured igni ter  and mo to r  nozzles.  



A l l  of the above tasks  w e r e  per formed  by CETEC personnel ,  with the excep- 
tion of fabr icat ion of mos t  of the t e s t  ha rdware ,  which was  per formed  by 
local  machine shops and the machine shop of the Stanford Depar tment  of 
Aeronautics and Astronaut ics .  

A detai led descr ipt ion of the technical activit ies appears  i n  the follow- 
i n g  subsections and i n  the Appendix. 

3 . 1  TECHNICAL BACKGROUND 

The successful  ignition of a solid-propellant  motor  with an  aft-end 
igniter sys t em can be  considered to have culminated when the igni ter  i s  with- 
drawn o r  ejected f r o m  the motor  nozzle (or  v ice  v e r s a ) .  Th is  can  occur  
ei ther before  o r  after  the igni ter  has  terminated i t s  action. The following 
sequence of events leading to that successful  culmination i s  general ly  typical: 

( 1 )  Initiation of igni ter  f i r ing when en t i re  sy s t em i s  a t  ambient 
p r e s s u r e .  

( 2 )  Ignition, f l ame spread ,  and build-up of the igni ter  flow and 
chamber  p r e s s u r e .  

( 3 )  Pene t r a t i on  of the igni ter  flow into the main  motor  cavity 
whe re  i t  r e v e r s e s  and flows out the motor  nozzle. 

(4) Radiative and convective heat  t rans fe r  to the motor  propellant  
gra in .  

( 5 )  Ignition of the propellant  a t  some  point on i t s  su r face .  

(6) Spread of the f l ame over  the en t i r e  propellant  sur face .  

( 7 )  Fill ing of the motor  chamber  and i n c r e a s e  of chamber  p r e s s u r e  
until the design p r e s s u r e  i s  reached.  This  event will general ly  
occur  over  s eve ra l  s t eps  beginning with event ( 3 ) .  

(8) Forc ing  of the igni ter  flow back out of the motor  throat  and 
es tabl ishment  of full sonic flow i n  the throat  (cal led unblocking) 
a t  o r  before  at tainment of design chamber  p r e s s u r e .  

(9) Interact ion between the opposed ign i te r  and motor  flows within 
the confinement of the motor-nozzle exit cone. 

(10) Termina t ion  and /or  withdrawal of the igni ter .  



The activit ies descr ibed  i n  this r epo r t  w e r e  devoted ent i re ly  to study 
of the post-ignition events ( 8 ) ,  (9), and (10) .  These  p rob lems  a r e  wholly g a s -  
dynamical  i n  nature  and w e r e  t rea ted  a s  such.  F o r  a review of the ignition 
events and per formance  of ign i te r s  under a var ie ty  of conditions, the r e a d e r  

1 i s  r e f e r r e d  to the r e su l t s  of the previous  p r o g r a m  . 

The  r e s u l t s  of the previous  p r o g r a m  with  r e s p e c t  to blockage and oscil- 
la t ions ,  and the l a t e r  in te rpre ta t ion  of those r e su l t s  wil l  be  br ief ly  descr ibed  
i n  o r d e r  to l ay  a foundation fo r  the approach taken i n  this p rog ram.  F igu re  I 
i s  a  schemat ic  of the geomet r ic  a r rangement  of the sys tem.  The  igni ter  i s  
placed within the motor-nozzle exit cone,  axial ly aligned with the motor .  Two 
nondimensional p a r a m e t e r s  have been  shown to be especia l ly  significant i n  
descr ibing the behavior of this s y s t e m  during the post-ignition period.  They 
a r e  the ra t io ,  P R ,  of the igni ter  and motor  chamber  p r e s s u r e s ,  and the ra t io ,  

I*, 
E-', shown i n  F i g u r e  2 ,  of the conical  annular a r e a  between the motor  nozzle 
and ign i te r  exit ba se  to the motor  throat  a r e a .  

F i g u r e  1. General  Ar rangement  of Aft-End Ignition Sys tern 

F igu re  2. Epsilon Star  -Igniter P lacement  P a r a m e t e r  



G e n e r a l  Behavior  

T h e  behavior  of the combined s y s t e m s  dur ing the post- ignit ion per iod  
appeared to b e  many-faceted  and usua l ly  r andom.  T h e  d i s c o v e r y  of the 
ex i s t ence  of f i r s t  unblocking, reblocking,  osc i l l a t ions ,  and  f ina l  unblocking,  
coupled wi th  the f a c t  that the o r d e r  of a p p e a r a n c e  of t h e s e  d i f ferent  events  
varied f r o r n r u n  to r u n ,  provided a  good deal  of specula t ion  and confusion. 

The bas ic  ins tabi l i ty  of the overexpanded igni ter -nozzle  flow s e p a r a -  
lion w a s  recogn ized  to be  signif icant  dur ing  the  p rev ious  p r o g r a m .  T h e  
opera t ing  conditions of the s y s t e m  under  which uns tab le  s e p a r a t i o n  o c c u r r e d ,  
and i t s  e l fec t  on the  s y s t e m ,  w e r e  not c l e a r l y  ident i f ied  a t  that  t ime ,  however .  
During pr epara t ion  f o r  this  p r o g r a m  addit ional  da ta  evaluat ion w a s  p e r f o r m e d ,  
which led to the  conclus ion that  the  behavior  of the o v e r a l l  s y s t e m  w a s  gen-  
e r a l l y  w e l l - o r d e r e d  and ra t ional .  I t  w a s  found that  the  r eg ions  of blocking 
and unblocking and the osc i l la t ions  could b e  s e p a r a t e l y  and  c l e a r l y  mapped  
and  that they w e r e  l a r g e l y  independent  of each  o t h e r .  

Opera t ing  Maps 

T h e  blocking/unblocking and osc i l la t ion  behavior  of the  hot m o t o r  t e s t  
.#. 

s y s t e m  i s  shown i n  F i g u r e  3 a s  a  function of P R  and s'". T h e s e  p lo ts  have  
b e e n  r e f e r r e d  to a s  opera t ing  m a p s  and define the  r eg ions  i n  which speci f ic  
behavior  w a s  o b s e r v e d  and the  boundar ies  a t  which  speci f ic  events  o c c u r r e d .  

0 onse t  

ce s sa t ion  

uns table  

0 final  unblocking 

1 . 0  1 . 2  1 . 4  1 . 6  1 . 8  2 . 0  1.0  1 . 2  1 . 4  1.6 1.8 2 .0  
E dc E l  

a )  Osc i l l a to ry  Behavior  b)  Blocking Behavior  

F i g u r e  3 .  Hot -F i r ing  Opera t ing  Maps 

T h e r e  a r e  two reg ions  of s t ab le  opera t ion  s e p a r a t e d  b y  one l a r g e  un- 
s t a b l e  r eg ion ,  a s  shown. T h e  upper  boundary  of the  uns tab le  r e g i o n  i s  m o s t  
s ignif icant ,  the lower  boundary being r e a c h e d  only when ign i t e r  ac t ion  i s  



terminated. It will be cus tomary ,  i n  this r epo r t ,  to identify events and con- 
ditions i n  t e r m s  of their  appearance  i n  the usua l  schedule of ignition of a 
mo to r .  The  upper  boundary will  be r e f e r r e d  to a s  the "onset  of osci l la t ions ,  I '  

i n  the s ense  that the flow i s  f i r s t  s table  and then begins to osci l la te  a t  the 
boundary a s  the p r e s s u r e  r a t i o ,  P R ,  i s  decreas ing.  

The  blocking map  of F igu re  3b shows t h r ee  c l ea r ly  s epa ra t e  reglons  
of blocking conditions. F i r s t ,  t he r e  i s  a region a t  genera l ly  higher p r e s s u r e  
r a t i o s  and low E"' i n  which the ma in  motor  flow i s  continuously blocked. S e c -  

.!, 

ond, t he r e  i s  a region a t  higher c"' and lower  p r e s s u r e  r a t i o s ,  for  which the 
flow i s  continuously unblocked. It  i s  apparent  that t he r e  a r e  a t  l e a s t  two 
specific flow s t ruc tu r e s  o r  conditions which m a y  exis t ,  depending upon PR 

.I, 

and s"', during a t ime  of unblocking. T h e  upper l ine ,  which i s  called in i t ia l  
unblocking, has  i t s  cha rac t e r i s t i c  i gn i t e r lmo to r  flow s t ruc tu r e ,  while the 
lower  l ine  i s  ca l led f inal  unblocking, again i n  t e r m s  of a decreas ing p r e s -  
s u r e  r a t i o  being the normal  operating condition. T h e r e  i s  a th i rd  pecul iar ly  
shaped region i n  which the motor  throat  in termit tent ly  reblocks  and unblocks. 
I n  the th i rd  region i t  appears  that the s y s t e m  i s  oscil lat ing between the flcw- 
f i e ld  s t ruc tu r e s  which a r e  cha rac t e r i s t i c  of the in i t ia l  and final unbloclting. 
The  location of the unblocking predic ted by  the analytical  model  developed 
during the previous p r o g r a m  (sl ightly modified to incorpora te  measu red  
nozzle wall  p r e s s u r e  distr ibution) i s  a l so  shown i n  F i g u r e  3b. The  a g r e e -  
men t  between the analysis  and the m e a s u r e d  final  unblocking s t rongly sug- 
ges  t s  that f inal  unblocking occu r s  when the highly over  expanded ign i te r  flow 
sepa ra t e s  within i t s  nozzle through a normal  shock. This  was  the ma jo r  
assumption upon which the analytical  model  was  based.  

On the ba s i s  of a review of the l i t e r a tu r e  * ¶  9 ,  l o  on severe ly  overexpanded 
superson ic  nozzles,  i t  was  concluded that the ins tabi l i t ies  of the  overa l l  sy s -  
t em w e r e  e i ther  t r iggered  o r  m o r e  l ikely di rect ly  produced by inherent  ins ta -  
b i l i t ies  of the igniter-nozzle flow separat ion.  Evaluation of the exper imental  
data  did not r evea l  evidence of motor  ins tabi l i ty  o r  o ther  flow in te rac t ion  
ins tabi l i ty  originating outside of the igni ter  nozzle. 

Method of A ~ ~ r o a c h  

The  p r o g r a m  r epo r t ed  he re in  was  undertaken with the objective of con- 
f i rming,  modifying, o r  re ject ing the above evaluation of the behavior of  the 
sys tem.  Because there  was  evidence that s eve ra l  flow-field s t ruc tu r e s  
might exist ,  the t es t  apparatus  was  designed to provide fo r  modeling the hot- 
f i r ing sy s t em i n  accordance wi th  s eve ra l  independent s im i l i a r i t y  o r  sca le  
f ac to r s ,  e. g. , Mach numbers ,  p r e s s u r e  r a t i o s ,  a r e a  r a t i o s ,  Reynolds num- 
b e r  effects.  The  flow s y s t e m  was  designed to provide g r e a t  lat i tude i n  esl:ab- 
l ishing schedules fo r  both increas ing  and decreas ing  p r e s s u r e  ra t ios  between 
igni ter  and mo to r ,  and fo r  varying absolute p r e s s u r e .  The  t e s t  sy s t em was  
extensively ins t rumented  with s ta t i c  p r e s s u r e  taps ,  affording a wide selection 



of t a p  location and r e sponse  r a t e  to thoroughly m a p  the s teady-s ta te  and t r an -  
s ient  p r e s s u r e  dis t r ibut ions  i n  both igni ter  and nozzle. I t  was  anticipated that 
s t u d y  and evaluation of the p r e s s u r e  dis t r ibut ions  and compar i son  with analyt -  
i c a l  mode ls  would r evea l  the na tu re  of the m o s t  significant  flow fields.  

3 .  2 EXPERIMENTAL ACTIVITIES 

3 ,  2 ,  1 Descr ip t ion of Exper iment  

The  exper imenta l  appara tus  was  designed to model  the aft-end igni ter  
a n d  motor  configurations tes ted  during the p r o g r a m  under Contract  NAS-3- 
1 0 2 9 7 ~ .  

I n  the cu r r en t  p r o g r a m  m o r e  extensive ins t rumenta t ion  was  provided to 
cha r ac t e r i z e  the igni ter  and motor  nozzle flow interact ion.  The  effects  of 
var ia t ions  i n  the igni ter  nozzle des ign p a r a m e t e r s  w e r e  studied. Motor and 
igni ter  s iz,es w e r e  designed to b e  a s  l a r g e  a s  poss ible  within the l im i t s  of 
the t es t  faci l i ty airf low capacity.  

Flow Svs tem 

Design of the flow s y s t e m  was  based  upon r e su l t s  of trade-off  s tudies  
which cons idered  facil i ty cons t ra in t s ,  modeling r equ i r emen t s ,  and cos t s .  A 
schemat ic  of the flow sys t em which r e su l t ed  f r o m  these  s tudies  i s  shown i n  
F i g a r e  4, The  sy s t em was  designed within the cons t ra in t s  of the fac i l i ty  gas  

3 s t o r age  capaci ty  (104 cu. f t . ,  2. 94 m , a t  2800 ps ia ,  19. 3 MN/m2)  and the 
max imum hea te r  flow capacity (approximately  5 lb .  , 2 .  27 kg, of a i r  / s e c  a t  
2000 p s i a ,  13. 79 MN/m2,  and 3 4 0 0 ° ~ ,  1889' K). I t  was  calcula ted that a  
total gas  flow of 18 l b /  s e c  a t  1000' R (8.  172 kg /  s e c  a t  556' K)  would provide  
acceptable  model  s i z e  and flow conditions within facil i ty cons t ra in t s .  T o  
achieve these  conditions, fac i l i ty  equipment was  r eplumb ed to accommodate  
approximately  a 3 . 4  l b l s e c  (1. 544 k g / s e c )  hea te r  flow and a 14. 5 l b / s e c  
(6. 583 k g / s e c )  by-pass  flow of cold a i r .  The hot and cold a i r  w e r e  mixed  
downstream of the hea te r  i n  a mixing chamber .  Maximum t empe ra tu r e  and 
p r e s s u r e  conditions a t  the mixing chamber  outlet w e r e  1 0 0 0 ' ~  (556OK) and 

2 8 5 0  p s i a  (5. 86 M N / m  ), respect ively .  Downstream of the mixing chamber  
the flow was  divided into supplies for  the ma in  motor  and ign i te r .  The m a i n  
motor  flow was  pa s sed  through a mult iple-hole round-edge o r i f i ce  plate.  By 
plugging varying numbers  of holes  i n  the o r i f i ce  p la te ,  the flow could be  
adjusted to provide  motor  chamber  p r e s s u r e s  between 75 and 100 p s i a  (0. 517 
and 0. 690 M N / ~ ' ) .  

T h e  igni ter  flow was  p a s s e d  through four  pa r a l l e l  thrott l ing valves ,  each  
i n  s e r i e s  with a solenoid-operated flow-shutoff valve. By prese t t ing  the 
igni ter  throttling valves and by p rope r  sequencing of the solenoid valves 
during the t es t  cycle ,  a  max imum of ten different  total p r e s s u r e  r a t i o  s t eps  
(flow r a t e s )  could b e  achieved fo r  any single t e s t  run .  



pebble bed 
heater 

F i g u r e  4. Flow Sys tem Schematic 

A round-edge throttling nozzle was  used  i n  the pebble-bed heater  supply 
l ine  to l imi t  the hea te r  flow. Mixing chamber  p r e s s u r e  and t empera tu r e  
w e r e  controlled through regulation of the cold airf low by a manually loaded 
p r e s s u r e  regu la to r  i n  the cold a i r  l eg  to the mixing chamber .  

A diverging diffuser sect ion was  ins ta l led downstream of the tes t  s e c -  
tion flow ducting. This  permi t ted  test ing a t  the sub-atmospher ic  flow duct 
p r e s s u r e s  neces sa ry  for  unsepara ted  flow i n  the model  motor  nozzle.  The 
diffuser sect ion dumped into a ver t i ca l  sound-suppres sion exhaust  tower.  

T h e r m a l  expansion s t r e s s e s  i n  the flow piping and ducting w e r e  mini-  
mized  by two h igh- tempera ture  ball-joint f l exures .  F o r e  and aft movement  
of the ign i te r  within the igni ter  flow duct was  permi t ted  through u s e  of a k~gh- 
p r e s s u r e  stainless-steel  flux hose.  

F i g u r e  5 shows a p ic tu re  of the mixing chamber ,  flow sys t em,  and tes t  
sect ions  downstream of the pebble-bed hea te r  outlet. 



F i g u r e  5. Exper imenta l  Apparatus 

Mixi nrr Chamber  

A c r i t i c a l  f e a tu r e  of the exper iment  des ign w a s  the hot and cold a i r  
mixing chamber .  T h e  purpose  of the mixing chamber  was  to complete ly  m i x  
the hot pebble-bed hea te r  a i r  with the cold by-pass  a i r  without excess ive  total 
p r e s s u r e  and t empe ra tu r e  l o s s e s .  Fabr ica t ion  cos t  cons t ra in t s  d ic ta ted  a 
fairly s imple  des ign without complex in te rna l  water-cooling pas  s ages .  

T h e  mixing chamber  configuration, shown schemat ical ly  i n  F i g u r e  6 ,  
consisted of four fabr ica ted  components:  the ma in  body, in le t  sect ion,  mix-  
i n g  tube, and la rge-vo lume mixing chamber .  A p ic tu re  of the m i x e r  chamber  
components i s  shown i n  F igu re  7. C r i t i c a l  e lements  of the design w e r e  the 
in le t  sect:-on l ip  (subjected to the high-velocity hea te r  a i r - g a s  s t r e a m )  and 
the ,mixiii;: tube. 
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F igu re  6. Mixing-Chamber Design Schemat ic  

F i g u r e  7. Mixing-Chamber Components 



Heal  t r an s f e r  s tudies  of the in le t  l ip  configuration indicated that the l i p  
should rernain  cool enough to r e t a i n  sufficient s t r u c t u r a l  s t r eng th  fo r  i t s  in-  
tended use. However,  the indicated safe ty  fac tor  was  sma l l  because  the 
assunled lieat t r an s f e r  coefficients  w e r e  believed to b e  conservat ive .  T o  
guard agains t  the possibil i ty of e r r o r ,  the f ront  face  and l ip  of the in le t  s e c -  
t i o n  w e r e  covered  wi th  a n  insulat ing Zi 02 coating. This  covering cons i s ted  
of an u~ idercoa t ing  for  be t t e r  bonding, a  coat  of low-density t he rmosp ray  
%i 02 fo r  the rmal  protection,  and a su r f ace  coat  of p l a sma  s p r a y  Zi 02 fo r  
e r o s i o n  r e s i s t ance .  A coating of Zi O2 t h e rmosp ray  was  sp r ayed  on the 
interior su r f ace s  of the l a r g e  mixing chamber  weld-end cap and outlet  elbow 
;or t h e rma l  protection.  

The  mixing tube was  configured to m i x  the high-momentum hot and cold 
gas s t r e a m s  before  they expanded in to  the l a r g e  mixing chambe r .  T o  enhance 
mixing, tlie leading edge of the mixing tube was  machined to have a scal loped 
o r  s lo t t ed  configuration,  a s  shown i n  F i g u r e  8. Each  s lo t  was  0. 25 inch  
(0, 0 0 6 3 5  ]TI) deep and approximately  0. 8 i nch  (0.0203 m )  long. The  c l ea r ance  
from the hack face  of the in le t  sect ion to the fo rwardmos t  p a r t  of the mixing 
tube was 0.0625 inch  (0.001 59 m). 

F i g u r e  8. Mixing Tubes  



The  mixing-chamber  a s sembly  sa t is factor i ly  per formed  i t s  intended 
function throughout the t es t  p r o g r a m  of over  130 hot a i r f low t e s t  cyc les ,  
Tempera tu r e -  s  ensit ive paint applied to the ex t e r i o r  su r f ace s  of the mixe r  
indicated that ex te r io r  t empe ra tu r e s  did not exceed 500'F (533OK) even at 
the outlet elbow on the l a r g e  mixing chamber .  The mixed gas  t empe ra tu r e  
a t  the mixe r  outlet did not exceed 600' F (589' K)  fo r  normal  t es t  conditions. 
Inspection of the m i x e r  a s sembly  af ter  completion of the t es t  p rog ram did 
not revea l  any mixe r  component degradation,  except f o r  sand and pebble 
f ragment  e ros ion  of the Zi O 2  f r o m  the inlet  sect ion f ace  and l i p  (see: F ig -  
u r e  9) .  

F igu re  9. Mixing-Chamber Inlet  F a c e  

Models 

Exact  modeling r equ i r e s  geomet r ic  and dynamic s imi l a r i t y  between pro-  
totype and model.  F o r  the aft-end exper iments  i t  was  imposs ib le  to mainta in  
dynamic s imi l a r i t y  between the solid-propellant  prototype and hot - a i r  model  
because  of differences i n  gas  p roper t i es  which define the i sen t rop ic  flow 
re la t ionships  for  geometr ical ly  s imi l a r  locations.  Specifically, the ove r -  
expanded igni ter  nozzle flow and shock re la t ionships  which a r e  dependent 



upon Mach number ,  s t a t i c  to total p r e s s u r e  ra t io ,  and normal  shock recovery  
p r e s s u r e  could not be exactly modeled because  of d i f ferences  i n  the gas  spe-  
cif ic heat r a t i o s  ( y ) .  There fore ,  the model  igni ter  nozzle designs and ex- 
pansion r a t i o s  deviated f r o m  geomet r ic  s imi l a r i t y  with the prototype i gn i t e r s ,  
i n  o r d e r  to obtain nozzle-exit  flow conditions m o r e  c losely  approximating 
dynamic s imi la r i ty .  Geomet r ic  s imi l a r i t y  on the other  ign i te r  and motor  
parairneter s  was  maintained.  

A nnaximum model  motor  throat  d iameter  of 3. 0 inch  (0. 0762 m )  was  
es tabl ished by facil i ty t empera ture ,  m a s s  flow, and m a s s  capacity cons t ra in t s .  
A compar i son  of bas ic  prototype and model  dimensions i s  p resen ted  i n  Table I. 

TABLE I 

Model Design P a r a m e t e r  Comparison 

P a r a m e t e r  P r o t o t y p e  Mode l  

T h r o a t  D i a m e t e r  - DL, i n .  (m) 5. 0 (0 .  127)  3. 00 (0 .0762)  
E x p a n s i o n  R a t i o  - A,/A&, 10. 0: 1 7 . 0 :  1 
N o z z l e  Half Angle ,  d e g  ( r a d )  17.  5 (0.  305)  17.  5 (0 .  305)  
Des ign  C h a m b e r  P r e s s u r e ,  p s i a  ( M N / ~ ~ )  500. 0 (3 .  448)  100. 0 (0.  69)  

T h r o a t  D i a m e t e r  - D?, i n .  (m) 0.  885  (0 .  0225)  0. 531 (0.  0135)  
E x p a n s i o n  R a t i o  - A , / A " ~  1O.O:l 6 . 9 8 : i  
Nozz,le Half Angle ,  deg  ( r a d )  17. 5 (0. 305) 17.  5 (0 .  305)  

2 D e s i g n  C h a m b e r  P r e s s u r e  ( m a x ) ,  p s i a  ( M N / m  ) 2 7 5 0 . 0  (18.  96)  650. 0 (4 .48 )  

The tes t  sect ion assembly  (F igu re  10) included a motor  chamber ,  a  
motor nczzle, and an  igni ter  assembly.  The igniter  assembly  was  enclosed 
within an  igni ter  flow duct which contained the igni ter  and motor  ga se s  and 
positioned the igni ter  wi th  r e spec t  to the motor  nozzle. An acces s  por t  was  
provided i n  the duct to pe rmi t  positioning and aligning the igni ter .  

The model  motor  was  fabr ica ted  f r o m  s tee l  pipe, pipe f langes ,  and a 
f low-expander section.  The 35 inch (0. 889 m) long by 5. 0 inch (0 .  127 m )  
d iamete r  por t  was  s imi l a r  to the in i t ia l  cylindrical  por t  a r e a  of the solid- 
propellant  motor .  An or i f ice  plate with nineteen 0. 3125 inch (0. 00794 m)  
d iamete r  round-edged or i f ices  for  choking the ma in  motor  flow was  located 
i n  between the two flanges a t  the model head--end. 

The  motor  nozzle, which was fabr ica ted  f r o m  a single s tee l  b i l le t ,  i s  
shown i n  F i g u r e  11. I t  was  designed to be  geometr ical ly  s imi l a r  to the p ro -  
totype solid-propellant motor  nozzle. 
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Major fea tures  of the igni ter  a s sembly  w e r e  the h igh-pressure  feed 
l ine  wi th  flexible hose ,  the ign i te r  chamber ,  and in terchangeable  ign i te r  
nozzle and ex te r io r  s leeves  (F igu re  12) .  The  a s sembly  design provided 
space  for ins ta l la t ion of min ia tu re  p r e s s u r e  t r ansduce r s  and p r e s s u r e  lines 
between the ign i te r  nozzle and ex te r io r  s leeve and permi t ted  the u s e  of dif- 
f e r en t  igni ter  nozzle configurations.  F ive  basic  configurations designated 
a s  Models A, B, C ,  D,  and E w e r e  used .  Tab le  I1 p re sen t s  the significant 
design p a r a m e t e r s  of e ach  of these  models .  The  Model A configuration was  
a l so  modified to tes t  methods  of nozzle oscil lat ion control .  T h e  f i r s t  method 
incorpora ted  bleed o r  boundary l a y e r  p r e s su r i za t i on  i n  the  nozzle exit cone. 
The  two configurations u sed  to t e s t  this method,  designated a s  AB 1 and AR2, 
a r e  shown i n  F i g u r e  13. The  other  method u sed  var ious  s tep  configurations 
designated a s  AS1, AS2, and AS3. These  nozzles a r e  schemat ical ly  shown 
i n  F i g u r e  14. 

TABLE I1 

Igniter  Design P a r a m e t e r s  

Hot F i r i ng  Model 
Pro to type  A B c D E ::: 

T h r o a t  Dia. , in .  0 .885  

( m )  (0. 0225) 
Exi t  Dia. , in.  2.  80 

( m )  (0. 071 1) 
~ x p a n s i o n  Rat io  10. 0:l  
Half Angle, deg 17. 5 

( r a d )  (0. 305) 
Lip  D ia . ,  in .  3 .375 

(m) (0. 0857) 
L ip  to Exit  D iame te r  

Rat io  1 .205  
pe/p0 0.0125 

0. 1603 

::: Tota l  p r e s s u r e  r a t i o  a c r o s s  no rma l  shock 
::::: S a m e  a s  Model IrAt1 but with ex t e r i o r  s l e eve  

The  ign i te r  nozzle a s sembly  was  positioned within the igni ter  ilow duct 
b y  a  c lamp and T-pla te  a r rangement  which r e s t e d  i n  a  wel l  i n  the bottom of 
the flow duct. Curved s lo t s  w e r e  cut into the bottom of the T-p la te  s o  that i t  
could be  rota ted with r e spec t  to the motor  nozzle fo r  angular misal ignment .  
The  b a s e  plate i n  the flow duct well  could be moved i n  a  l a t e r a l  d i rect ion to 
provide l a t e r a l  misal ignment .  Ex t r eme  c a r e  was  taken i n  the fabr icat ion of  
the nozzle,  igni ter ,  and flow duct components to i n s u r e  p roper  al ignment of 
the igni ter  and motor  nozzle. F o u r  mi l led  r e f e r e n c e  f l a t s  and tap holes 
placed 90' (1. 57  r a d )  apa r t  w e r e  provided on both the flow duct and motor  

4, 

nozzle to pe rmi t  the u s e  of depth gages  i n  set t ing the igni ter  c'" location o r  

i n  misaligning the ign i te r .  





a )  Model ABl  
I 

XDCR press. ,  ( .393rad)  
tap plane . 0625" 

b )  Model 

.ly 
holes 

b) Model AB2 1 

Figu re  13. Igni ter  Perforated-Nozzle  Configurations 

a )  Model AS1 

c)  Model 

F i g u r e  14. Stepped Igniter-Nozzle Configurations 



Instrumentation 

Motor and igni ter  p r e s s u r e  taps (0. 055 inch,  0. 0014 m, dia. ) w e r e  
located a s  shown i n  F igu re s  11 and 15. Motor-nozzle p r e s s u r e - t a p  l ine  
lengths w e r e  approximately 3 inches  (0.0762 m ) .  The  igni ter  p ressure - tap  
l ines  w e r e  approximately  30 inches  (0. 762 m )  i n  length i n  o r d e r  to loca te  
the t r ansduce r s  outside of the high- temperature  environment of the igni ter  
assembly .  The length of the igni ter  s e n s e  l ines  resu l ted  i n  some  attenuation 
of high-frequency p r e s s u r e  osci l la t ions ,  but did not appreciably  affect the 
ma jo r  osc i l l a to ry  cha rac t e r i s t i c s  o r  phase  re la t ionships  between the p r e s -  
swrz taps ,  

Model A&E B C D 

p117 ,  217, 317 

p 1 1 8 , 3 1 8  

p 1 1 9 , 3 1 9  

p 1 1 6 '  

F igu re  15. Igniter-Nozzle P r e s s u r e - T a p  Locations 

A maximum of 24 p r e s s u r e  measu remen t s  was  available for u s e  on any 
t e s t ,  Actual tap locations used during each  tes t  w e r e  va r i ed  according to 
t es t  objective. Typical  measu remen t s  of e ach  tes t  included: mo to r  and igni ter  
chamber  p r e s s u r e ,  th ree  to f ive igni ter  nozzle p r e s s u r e  measu remen t s ,  f r o m  
nine to twelve motor  nozzle p r e s s u r e  measu remen t s ,  and motor  total tem- 
pe ra tu r e .  Igniter  total t empe ra tu r e  was  m e a s u r e d  on se lec ted  runs  to com- 
p a r e  igni ter  and motor  total t empera tures .  



T e m p e r a t u r e  measu remen t s  w e r e  m a d e  with fas  t - r e sponse  thermo-  
couples,  and p r e s s u r e s  w e r e  m e a s u r e d  with s  t r a in  gage and semi-.conductor 
p r e s s u r e  t r ansduce r s .  

T ransduce r  t e s t  data w e r e  r eco rded  on a n  osci l lograph equipped with 
a d i r ec t - r ead  record ing  magazine.  Galvanometers  which exceeded the 
minimum des i r ab l e  f requency r e sponse  fo r  each  measu remen t  w e r e  used.  
Power  amplif ication fo r  s i x  high-frequency-response galvanometers  was  
provided by s ix  D. C. differential  ampl i f i e r s .  T ransduce r  excitat ion was  
provided with heavy-duty ba t te r ies .  

Additional flow s y s t e m  measu remen t s  including mixing chamber  p r e s s u r e  
and tempera ture ,  mo to r  chamber  p r e s s u r e  and t empera tu r e ,  and pebble-bed 
p r e s s u r e  w e r e  r eco rded  on a slow-speed s t r i p  cha r t .  T h e s e  m e a s u r  ernents 
w e r e  u sed  f o r  r ea l - t ime  survei l lance and control  of the t e s t  airf low sys t em.  

3 .2 .2  Testing 

T e s t  P r o c e d u r e  

T e s t  p rocedures  w e r e  es tabl ished to produce accu ra t e  and re l i ab le  data 
with min imum tes t  r e cyc l e  t ime.  Data accu racy  was  provided by running pre- 
t e s t  and pos t - t es t  ca l ibra t ions  on a l l  p r e s s u r e  t r ansduce r s  and thermocouples ,  
The  s t r a i n  gage p r e s s u r e  t r ansduce r s  w e r e  e lec t r i ca l ly  ca l ib ra ted  to full 
t r ansducer  s ca l e  by u s e  of a cal ibra t ion r e s i s t o r  i n  the balancing br idge  c i r -  
cui ts .  The  min ia tu re  sol id-s ta te  t r ansduce r s  w e r e  placed on a p r e s s u r e  m a n -  
ifold and ca l ib ra ted  against  a s tandardized p r e s s u r e  gage. The  thermo-  
couples w e r e  cal ibra ted by introducing a known mill ivolt  e lec t r i ca l  s o u r c e  
into the  thermocouple fitting a t  the measu remen t  location.  The z e r o  and 100 
percen t  cal ibra t ion s teps  obtained by these  methods w e r e  r eco rded  on the 
osci l lograph paper  with i t s  respec t ive  t es t  run.  The  e lec t r i ca l  ca l ibra t ion 
of the s t r a i n  gages  was  per iodical ly  checked by placing the t r ansduce r s  on 
a p r e s s u r e  manifold which was  p r e s s u r i z e d  to 25, 50, 75, and 100 p~ercent  
of full t r ansducer  s ca l e  a s  de te rmined  by a s tandardized ( t es ted  with a dead- 
weight t e s t e r )  p r e s s u r e  gage. T h e  e lec t r i ca l  and p r e s s u r e  cal ibra t ions  w e r e  
then compared  and appropr ia te  cor rec t ion  f ac to r s  w e r e  ass igned  to each t r ans -  
ducer  e lec t r i ca l  ca l ibra t ion fo r  the purpose of data  reduction.  

T e s t  r e cyc l e  t ime  was  p r i m a r i l y  a function of the t ime  r equ i r ed  to rega in  
sufficient t empe ra tu r e  (heat)  i n  the pebble-bed hea te r  and to r e c h a r g e  the high- 
p r e s s u r e  s to rage  sphere .  Init ial  heat-up t ime,  i. e. , the t ime  to r e a c h  a 
s tabi l ized t empera tu r e  throughout the pebble bed with an  indicated top bed 
t empera tu r e  of 3 0 0 0 ' ~  ( 1 9 2 2 ' ~ ) ,  was  f r o m  t h r e e  to four days.  F o r  this 
r e a s o n  the pebble-bed heater  s y s t e m  was  r u n  continuously fo r  the  s ix-  month 
tes t  durat ion except when shut down for emergency  r e p a i r s  o r  for test ing.  
During each tes t  the t empe ra tu r e  a t  the top of the pebble bed  dropped. approxi- 
mate ly  400' to 500' F (478' to 533' K). Hea t ing ' recovery  t ime  to r ega in  a 
sa t i s fac tory  p r e - t e s t  t empe ra tu r e  of 2800' to 3 0 0 0 ' ~  (1811' to 1922' K)  was 
approximately  one hour.  



C o m p r e s s o r  r u n  t ime  to r e p r e s s u r i z e  the h igh -p re s su re  a i r - s  to rage  
sphe re  was  two hours  and fo r ty  minu tes  with one c o m p r e s s o r  and one hour 
and twenty minu tes  with two c o m p r e s s o r s .  One of the two faci l i ty  com-  
p r e s s o r s  was  inoperat ive  with mechanical  p rob lems  during a significant  
port ion of the t es t  p rog ram.  

All t e s t s  w e r e  conducted a f te r  5:00 p . m .  because  of the ex t r eme  noise 
generated by the exper iment .  

The  igni ter  E':' posit ion and al ignment o r  misal ignment  w e r e  s e t  p r i o r  
to e ach  tes t .  Th i s  t a sk  was  accomplished by adjust ing the ign i te r  posit ion 
within the clamping and aligning devices  and by verifying p rope r  p lacement  
w i ~ h  depth measu remen t s  a t  four locations on the motor  nozzle and four  
locations on the igni ter  flow duct. 

E a c h  t es t  was  s t a r t e d  by s imul taneously  opening the a i r - supp ly  r egu -  
l a t o r  valves on both the hot and the cold flow legs  to the  pebble bed and 
mixing chamber  ( s e e  F i g u r e  4) .  Approximately 20 seconds w e r e  r equ i r ed  
to r e a c h  a s t eady-s ta te  operating p r e s s u r e  of 800 ps i  (5. 516 M N / ~ ~ )  i n  the 
pebble-bed hea te r  and mixing chambe r .  Another 10 seconds  under full-flow 
conditions w e r e  r equ i r ed  before  the mix ing-chamber  t empe ra tu r e  r e ached  
400' -500°F  (478 ' -533 '~) .  At that t ime,  the total t empe ra tu r e  of the ma in -  
mo to r  ga se s  was  approximately  3 0 0 ~ - 4 0 0 ~  F (422'-478'K). During this  s t a r t -  
up period the hot ga se s  f r o m  the mixing chamber  w e r e  allowed to flow through 
the igni ter  sequencing valves a s  well  a s  the main-motor  valve,  heating up the 
ha rdware  to t empe ra tu r e s  approaching the ga s  t empe ra tu r e .  The  automat ic  
t e s t  sequencer  was  activated when the de s i r ed  s  teady-s ta te  operat ing condi- 
tions w e r e  r eached  i n  the mixing chambe r .  The  t es t  sequencer  automatically 
turned tho-. osci l lograph r e c o r d e r  to high speed  and sequential ly c losed  and 
reopened the igni ter  throttling valves.  T h e  automat ic  sequence during which 
t es t  data  was  r e c o r d e d  l a s t ed  about 7 seconds  with approximately  0. 7 second 
between succe s s ive  valve opening o r  closing s ignals .  During this pe r iod  the 
motor  chamber  p r e s s u r e  was  essent ia l ly  constant  except f o r  blockage p e r -  
turbations while the igni ter  p r e s s u r e  changed plateau l eve l s .  Typical  p r e s -  
s u r e  and t es t  events during a t e s t  cycle  a r e  shown schemat ical ly  i n  F i g u r e  1 6 .  

Test shut-down was  accomplished by closing the hydraul ic-control led  
a i r - supp ly  valve to the pebble-bed hea te r .  Overheating of the t es t  equip- 
ment  was  prevented by bleeding cold a i r  into the mixing chamber  with the 
manually opera ted  p r e s s u r e  regu la to r  during the hot-gas blowdown of the 
pebble bed. P o s t -  t e s t  ca l ibra t ions  w e r e  completed and  prepara t ions  fo r  
the next t e s t  w e r e  made.  

Special  P r o b l e m s  

Twenty t e s t s  w e r e  r equ i r ed  to check out and ca l ib ra te  the faci l i ty a i r -  
flow sys t em,  pebble-bed hea te r ,  and ins t rumenta t ion  and to es tab l i sh  f inal  
t e s t  p rocedures .  





A l a r g e  throttling valve was  init ial ly used to throt t le  the ma in  motor  
flow. This  resu l ted  i n  an  excess ive  p r e s s u r e  d rop  and the valve was  
rep iaced  by  a mult iple-hole o r i f i ce  plate a t  the model motor  head-end. 
Colcl airf low to the mixing chamber  was a l so  lower  than des i r ed  because  
of excess ive  pipe f low-pressure l o s se s .  The  cold-ai r  p r e s s u r e  regu la to r  
was subsequently moved f r o m  i t s  location adjacent to the s to rage  sphe re  
and placed just ups t r eam of the mixing chamber .  

Considerable  trouble was  exper ienced with the solenoid-actuated 
igni ter  throttling valves.  Sand and dust f r o m  the pebble-bed hea te r  f r e -  
quently lodged between the valve piston and body, r e s t r i c t i ng  opening o r  
closing during the tes t .  This  p rob lem was  somewhat al leviated by  cleaning 
a n d  lubr icat ing the valves just  p r i o r  to each  tes t  and by replacing the s ta in less -  
s t e e l  valve r ings  with teflon r ings .  

Original  plans cal led fo r  instal lat ion of min ia tu re  sol id-s ta te  p r e s s u r e  
t r ansduce r s  i n  the igni ter  assembly  cavity between the igni ter  nozzle and 
the ex te r io r  s leeve.  However,  problems w e r e  encountered i n  obtaining the 
proper  cal ibra t ion r e s i s t o r  fo r  calibrating the t r ansduce r s  e lect r ical ly .  
The hot  environment ins ide  the cavity and the requ i rement  fo r  adequate 
cavity cooling to prevent  t ransducer  damage w e r e  a l so  of concern.  T h e s e  
p rob lems  w e r e  reso lved  by mounting the t r ansduce r s  outside the igni ter  flow 
duc t  . 

T e s t  Conditions 

T e s t  conditions w e r e  var ied  to accomplish  t es t  objectives defined under 
the genera l  ca tegor ies  of (1) flow character izat ion,  ( 2 )  oscil lat ion-control  
techniques,  ( 3 )  misal ignment  e f fec t s ,  and (4)  lift-off effects.  

F i v e  bas ic  igni ter  nozzle configurations w e r e  used  to cha rac t e r i ze  the 
flow interact ions  i n  the motor  and igni ter  nozzles.  Each  configuration was  
tes ted by conducting a r ange  of p r e s s u r e  ra t ios  for  se lected c ~ '  locations 
between I .  20  and 1. 80. F o r  m o s t  t e s t s  the p r e s s u r e  ra t ios  ranged f r o m  a 
value suflicient to cause  main-motor  throat  blockage to a n  igniter-off con- 
ditlon (PR = 0).  F o r  high €$' values i t  was  neces sa ry  to reduce  the main-  
motor  chamber  p r e s s u r e  to approximately 75 p s i a  (0. 517 M N / ~ ~ ) .  A number 
of t es t s  w e r e  duplicated with identical  tes t  conditions, but with changes i n  
ins t rumentat ion to provide m o r e  complete data than could b e  acquired f r o m  
a single tes t .  T e s t s  w e r e  a lso  r u n  for identical  s':' locations,  but a t  different 
absolute motor  chamber  p r e s s u r e s  to ver i fy  that the observed  phenomena 
w e r e  dependent only upon re la t ive  igni ter  to motor  p r e s s u r e s  and m a s s  flows. 

Igniter  Model A configuration was  modified and tes ted to evaluate tech- 
niques l o r  igni ter-  and motor-nozzle-osci l la t ion suppress ion  o r  control ,  The 
f i r s t  two techniques, using igni ter  Models AB 1 and AB2, at tempted to r e t a r d  
igni tes-nozzle  boundary-layer separa t ion  and hence unstable nozzle flow by 
boundary layer  suction and blowing. A thi rd  technique used  s teps  of varying 



s i z e s  (Models AS1, AS2, and AS3) to modify the igni ter-nozzle  flow- 
separa t ion  cha rac t e r i s t i c s .  

Severa l  t e s t s  w e r e  conducted a t  se lec ted  igni ter  s": locations and P R  
values  with sudden ign i te r  terminat ion to demons t ra te  sa t i s fac tory  igni ter  
operat ion without motor  -nozzle blockage o r  osci l la t ions .  

Misalignment t e s t s  w e r e  conducted to define the effects of igni ter-nozzle  
misal ignment  on motor-nozzle  p r e s s u r e  distr ibution and cha rac t e r i s  tic oper -  
ating conditions. Model A tes t s  w e r e  conducted fo r  the l a t e r a l ,  angular ,  
l a t e r a l  plus angular ,  and l a t e r a l  minus  angular geome t r i e s  shown in  F i g u r e  
17. La t e r a l  misal ignments  w e r e  always 3 percen t  of the motor  throat  diarn- 
e t e r  (0. 09 inch,  0. 00229 m )  and angular misal ignments  w e r e  r e s t r i c t e d  to 
angles of 1. 5 degrees  (0. 0262 r ad ) .  Model B was  tes ted for  l a t e r a l  misal ign-  
men t s  only. Both models  w e r e  tes ted over  a wide c "  and P R  range .  

m o t o r  
t h roa t  

i gn i t e r  Cji- - - -- 
m o t o r  Cji- ' 4 ! 0 . 0 9  in.  

a )  L a t e r a l  (. 00229m) 

1 . 5 "  
(. 0262 rad) 

f i gn i t e r  % - - -- 'I - 
t m o t o r  & I 
\ 

b) Angular  ! 

I. J 

(. 0262 r a d )  0 . 0 9  in .  
( .  00229m) 

ign i t e r  % 

, - -  

c )  Angular  P l u s  L a t e r a l  I 
. ? &  

1 0.09 in.  
1.3 

(. 0262 r a d )  
t m o t o r  E - 

i gn i t e r  g +- 
-- 

d)  Angular  Minus  L a t e r a l  
n id tor  T 
t h roa t  

F igu re  17. Misalignment Geomet r ies  
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Lift-off t e s t s  w e r e  r u n  a t  s'" values  f r o m  2. 0 to 3. 0 (higher than those 
which would general ly  be u sed  fo r  ignition) to invest igate  the cha rac~ te r i s t i c  
nozzle in teract ions  which would occur  during motor  lift-off o r  ign i te r  ejection,  

A s u m m a r y  of a l l  t e s t s  conducted, l i s t ing significant t es t  conditions o r  
objectives,  i s  given i n  Table  111. 



TABLE I11 

Tes t  Summary 

Date Teat  No. --- Model - Comments 

checkout 
character iza t ion 

!! 

, 
I t  

!, 

, I  

I f  

I, 

,, 
I 

I, 

I ,  

characterization, high motor P" 
I low " " 

I I 

characterization 
I, 

I ,  

I ,  

, I  

, 
I 1  

characterization, low motor PO 

high " " 

characterization 
,I 

1 1  

I 

osc.  control, ign. cavity p r e s s  25 psia'(0. 172 MN/m2) 
II 50 " (0.345 MN/m2) 

I 75 (0. 517 MN/m2) 
I 4  " low cavity vacuum 

I !  medium 1 1  " 
I I ,, I ,I ,I 

I ,  I 1  ,! 1 1  I ,  

11 1 ,  I !  11 I t  

I, I I f  11 

I ,  I f  I, ,I 

,, I 1 1  I ,  

characterization 
,I 

, 
lift-off 

I t  I, 

I t  I, 

,I I! 

osc .  control, medium cavity vacuum 
t t  I I I 1  

!! 

lift-off 
I f  ,I 

,, ,! 

character isa t ion 
I, 

t 



Date 

TABLE I11 

Tes t  Summary (concluded) 

T e s t  No. Mode1 s" Comments 

character iza t ion 
misalignment,  l a t e ra l  

8 ,  I ,  

t 11 

t 1 1  

, I  angular 
1 1  I !  

I ,  

I I angular plus la tera l  
1, I !  I ,  

I, 1 1  , I  I /  

I I  angular minus l a t e ra l  
I ,  I ,  I !  I ,  

( 1  I ,  

characterization 
I t  

characterization, instrumentation changes 
I 

, I  I 

o sc .  control 
I I 

characterization, instrumentation changes 
, I  , I  

osc.  control 
I! I 1  

$ 1  I 

characterization, high freq. ign. p r e s s .  
, I  I ,  ( 1  I !  I ,  



3,  2.  3 T e s t  Resu l t s  

Genera l  

T e s t  data indicated that motor- igni ter  nozz le -pressure  behavior could 
be  descr ibed ,  a s  expected, by the p a r a m e t e r s  P R  and c'". The nozzle p r e s -  
s u r e s  w e r e  e i ther  s table  o r  unstable with ei ther choked (unblocked) o r  un- 

.&I 
choked (blocked) motor  - nozzle throat  flow depending upon the ign i te r  c"' 
location and the instantaneous value of PR. Data fo r  Model A showing r e p r e -  
sentative aligned tes t  r e su l t s  a t  low, in te rmedia te ,  and high c"' values a r e  
shown i n  F igu re s  18 through 21. Other unmodified model geome t r i e s  d is-  
played s imi l a r  behavior with the exception that, fo r  d i s s imi l a r  igni ter  nozzle 
geomet r ies ,  the t ransi t ion f r o m  one cha rac t e r i s t i c  operating mode  to another 
occu r r ed  a t  different  E':: and P R  values.  

.!< 

At low c"' values the flow behavior can be  cha rac t e r i zed  i n  o r d e r  of 
decreas tng  p r e s s u r e  r a t i o s  a s  (1) ini t ial ly blocked and s table ,  followed by 
( 2 )  blocked unstable flow, with (3)  unblocking and final  cessa t ion  of osc i l -  
lat ions just p r i o r  to terminat ion of igni ter  flow. F igu re s  18 and 19 p re sen t  
data f r o m  tes t  116 conducted a t  c "  = 1 .20  over  a range  of chamber  p r e s s u r e  
r a t i o s  f r o m  5.29 to l e s s  than 1. At the highest igni ter  p r e s s u r e  (PR = 5. 29), 
the mo to r  throat  was  blocked and the p r e s s u r e  i n  both nozzles was  s table .  

Following c losure  of an  igni ter  flow-throttling valve, the igni ter  chamber  
p r e s s u r e  decayed gradual ly  to a new s teady-s ta te  level .  The  igni ter  nozzle 
p r e s s u r e s  i n  tu rn  decreased  to some  min imum level  a t  which the flow a t  
each  p r e s s u r e  tap began to s epa ra t e  i n  response  to the re la t ive  i n c r e a s e  i n  
back p r e s s u r e .  Motor nozzle blockage continued a s  indicated by the osci l la-  
tory cha rac t e r  of the motor  throat  tap (p ) and the subcr i t i ca l  throat  p r e s -  
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s u r e  ra t io .  Although blocked, the motor-nozzle  wall  p r e s s u r e s  w e r e  r e l a -  
tively s table  until P R  = 3. 09 a t  which point high-amplitude p r e s s u r e  osci l la-  
tions w e r e  recorded  i n  both igni ter  and motor  nozzles.  Two success ive  
per iods  of unstable and s table  flow w e r e  observed a t  P R  = 3 .  09, indicating 
marg ina l ly  unstable flow conditions for  that p r e s s u r e  r a t i o  and c':' value.  
During these  per iods  of instabil i ty,  i n c r e a s e  i n  the mo to r  throat  (p lO7)  and 
chamber  (p l  p r e s s u r e s  indicated m o r e  re la t ive  blockage of the motor  
riozzle throat  through i nc r ea sed  penetrat ion of the igni ter  jet.  Motor-nozzle 
unblockixrg and f inal  cessa t ion  of oscil lat ions occu r r ed  af ter  the final ign i te r  
flow-throttling valve had been closed.  

J, 

For t e s t s  of in te rmedia te  c"' values  the mo to r -  and igni ter-nozzle  flow 
beha-vior was  s imi l a r  to that a t  low c:!: values except that the motor-nozzle  
throat  flow choked (unblocked) p r i o r  to the onset  of osci l la t ions .  Typically 
the motor  throat  again reblocked with oscil lat ion onset  and did not f inally 
unblock until a  lower  p r e s s u r e  ra t io .  Igniter  - and motor  -nozzle p r e s s u r e  
behavior fo r  c"' = 1. 5 i s  i l lus t ra ted  i n  F igu re  20. 





Figu re  19. Aligned Model A T e s t  Data ,  E"' = 1. 20  







At high E "  values the motor-nozzle  throat  unblocked a t  re la t ively  high 
chamber  p r e s s u r e  r a t i o s  and did not reblock a t  any lower  p r e s s u r e  ra t io .  
After an  unblocked P R  r ange  during which the flow w a s  modera te ly  s table ,  
large-ampli tude igni ter  and motor  oscil lat ions began and continued until 
ign i te r  flow was  terminated.  Typical  p r e s s u r e  behavior i n  the igni ter  and 
motor  nozzles and chamber s  i s  shown i n  F i g u r e  21 for  c'' = 1. 8. 

0 s  cil lat ions 

Seve re  motor-nozzle  p r e s s u r e  oscil lat ions appeared  only i n  conjunction 
with  s imi la r  igni ter-nozzle  p r e s s u r e  dis turbances .  Although i t  w a s  common 
fo r  the cha rac t e r i s t i c  p r e s s u r e  dis turbances  to display l a t e r a l  o r  rota t ional  
components, the longitudinal component i n  mos t  c a s e s  was  predominant.  

The techiques tes ted to suppress  o r  el iminate motor-nozzle  p r e s s u r e  
oscil lat ions w e r e  unsucces  sful wi th  one exception. Igniter  nozzle Model AS3, 
which contained the l a r g e s t  s tep tested,  significantly suppressed  the amplitude 
of both ign i te r -  and motor-nozzle  p r e s s u r e  oscil lat ions a s  shown i n  F igu re  22. 

The  behavior of Models AB1 and AB2 was  general ly  s imi l a r  to that of the 
unmodified nozzles.  However, some  atypical  p r e s s u r e  cha rac t e r i s t i c s  w e r e  
noted par t icular i ly  for  nozzle ABZ, which produced a bi-  s table  stepped p r e s s u r e  
fluctuation i n  the motor  nozzle for  some  test: conditions. 

Misalignment 

Simple l a t e r a l  and angular misal igned t e s t s  produced data which w e r e  
nominally s imi l a r  to the aligned tes t s .  Combined angular and l a t e r a l  m i s -  
alignment showed a tendency toward a l te rna te  a symmet r i ca l  at tachment of 
the igniter  jet  to opposite s ides  of the igni ter  wall.  F igu re  23 shows typical 
data f r o m  a tes t  wi th  combined l a t e r a l  and angular misalignment.  

Lif t-Off 

Lift-off t es t  data indicated a d e c r e a s e  i n  the motor-nozzle  p r e s s u r e  
oscil lat ions with increas ing  c4.  At ci: 5 2. 5, motor-nozzle  oscil lat ions 
w e r e  not significant. Also a t  E" > 2. 5, no motor-nozzle  blockage was  expe- 
r ienced,  due to a l imita t ion on the max imum PR which could be  obtained 
with  the exper imental  apparatus.  

3 .2 .  4 Data Reduction 

The  t e s t  data w e r e  reduced to engineering v a l u e s b y  application of 
sca le  f ac to r s  determined f r o m  p re - t e s t  and post- tes t  cal ibrat ion of each  
ins t rumentat ion t ransducer  . 







.,. 

T1-c change i n  E'" value with misal ignment  was  sma l l .  Hence for  m i s -  
.!< 

aligned t e s t s ,  the c": value was  a s sumed  to be equal to the cq' value fo r  an 
aligned igni ter  located a t  an  equivalent axial d is tance f r o m  the motor  throat  
plane,  

A pr incipal  problem i n  reducing the data was  the difficulty i n  de t e r -  
mining when the motor  throat  flow was  unblocked, par t i cu la r ly  a t  in i t ia l  
and final unblocking. Prev ious  exper ience indicated that the cessa t ion  of 
~ h c  propagation of motor-nozzle  p r e s s u r e  dis turbances  u p - s t r e a m  to the 
motor  -nozzle t h roa t -p r e s su re  tap was  the eas ies t  and mos t  re l i ab le  de t e r -  
rninarit. However,  during the cu r r en t  p r o g r a m  nozzle throat  oscil lat ions 
w e r e  observed  to occur  a t  a l l  t imes .  These  oscil lat ions appeared to be a  
cha rac t e r i s t i c  of the specific throat  geomet ry  (constant  a r e a  sect ion)  of 
the motor  nozzle. It  i s  believed that the osci l la t ions  resu l ted  f r o m  a  shift 
of the choking location along the constant  a r e a  sect ion of the throat  f lat  

i n  response to low-level fluctuations i n  the motor  chamber  flow. 

Analysis  of the oscil lat ions indicated a  change i n  cha rac t e r  during 
blocked or  unblocked flow. When the nozzle was  c l ea r ly  blocked o r  un- 
choked, the oscil lat ions appeared to be  above a  constant basel ine  p r e s s u r e  
Level. When the throat  was  c l ea r ly  unblocked, the p r e s s u r e  f luctuated below 
ilhe apparent baseline.  At ini t ial  o r  final unblocking these  p r e s s u r e  fluctu- 
at ions changed f r o m  intermit tent ly  upward to in termit tent ly  downward. This  
cl-iaracteristic frequently requ i red  subjective in te rpre ta t ion  to de te rmine  
the exact point when unblocking occur red .  

3 . 3  DATA EVALUATION AND ANALYTICAL MODEL DEVELOPMENT 

The p r i m a r y  purpose of the contract  effort was  to develop design 
c r i t e r i a  which could b e  used  to design an  aft-end ignition sy s t em for a  
given solid-propellant motor  sat isfying the following requ i rements :  

(1) Sat isfactory ignition. 

(2) No motor  o v e r p r e s s u r e .  

(3) Control  o r  minimization of the flow-field osci l la t ions .  

The  previous p rog ram was  successful  i n  establishing techniques which can 
be  used t o  control  ignition cha rac t e r i s t i c s .  The p rog ram repor ted  he re in  
was or iented ent i re ly  toward the l a t t e r  two requ i rements .  Consequently, 
the development of analytical  models  of the flow fields occur r ing  during 
initial unblocking and a t  the onset  of oscil lat ions was  undertaken.  The  goal 
was  that these  models  should b e  sufficiently r igorous  to provide general i ty  
for conical and contoured nozzles,  d i f ferent  gas p roper  t ies  (propellant  
f o r n ~ u l a t i o n s ) ,  and nozzle s ize .  



T h e  exis tence of s eve ra l  cha rac t e r i s t i c  flow-field s t ruc tu r e s  d.uring 
the post-ignition per iod  was  confirmed. The  genera l  ra t ionale  of the 
behavior of the sys tem,  a s  descr ibed  i n  Section 3. 1, was  found to be c o r -  
r e c t .  The  init ial  and final unblocking events o c c u r r e d  a s  expected, with 
flow-field s t ruc tu r e s  which w e r e  pecul iar  to each  event, a s  d i scussed  i n  
Section 3. 3 .  1. Tha t  type of flow f ie ld  which prevai led during in i t ia l  .un- 
blocking has been cal led Mode A. The  Mode B of s t r u c t u r e  exis ted during 
final  unblocking. The m a j o r  oscil lat ions w e r e  identif ied to r e s u l t  f r o m  
unstable  igni ter  flow separat ion,  with the igni ter  flow f ie ld  rapidly  a l t e r  - 
nating between Mode A and Mode B. 

The  flow-field models  have been  formulated l a rge ly  through induc - 
tive reasoning based  upon the m e a s u r e d  p r e s s u r e  distr ibutions and the 
s p a r c e  l i t e r a t u r e  available on opposed superson ic  flows. In a s ense ,  the 
evidence regard ing  the flow-field s t ruc tu r e s  can be  considered circurn- 
s tant ia l  and has  r equ i r ed  a g r ea t  deal  of intuit ive in te rpre ta t ion .  Betcause 
of the t ime  requ i red ,  i t  was  not poss ible  to reduce  and evaluate a l l  the exper- 
menta l  data concur ren t  with the exper iments .  However,  the genera l  behavior 
and the var ia t ions  of e ach  model  w e r e  evaluated cu r r en t l y  with the t es t s  , and 
the operating m a p s  w e r e  plotted fo r  each tes t  to ensu re  that any apparent  
anomal ies  could b e  examined with additional t e s t  points. The  per formance  
and operating behavior of the slotted nozzle configurations w e r e  a l so  eval-  
uated on a c u r r e n t  ba s i s  to support  modifications which could r e su l t  :in 
posit ive control  of the flow-field osci l la t ions .  

Following completion of the t e s t  p rogram,  the data  w e r e  in tensively  
studied and the development of the analytical  models  proceeded general ly  
i n  the following fashion; F i r s t ,  a n  a t tempt  was  made  to const ruct  a ra t ional  
flow-field model wich produced wal l  p r e s s u r e  distr ibutions i n  the ign i te r  and 
m a i n  motor  nozzles reasonably s imi l a r  to the m e a s u r e d  distributions; for 
specific t es t  conditions, and then for  m o r e  genera l  conditions. However,  
this was  categor ical ly  and uniformly unsuccessful .  In  no c a s e  was  i t  pos-  
s ib le  to build a model  for  ini t ial  unblocking, onset  of osci l la t ions ,  o r  f inal  
unblocking which reproduced the exper imental ly  m e a s u r e d  p r e s s u r e  prof i les ,  
and which sa t is f ied the equations of conservat ion of both m a s s  and momentum,  
The  assumptions  u sed  throughout the analytical  study were ,  apparent ly ,  con- 
s iderab le  oversimplif ications i n  s o m e  c a s e s ,  and w e r e  dictated by the ex t r eme  
complexity of the in teract ing,  confined flow f ie lds ,  and the l imi ted  t ime  avail- 
able  within the scope of the p rogram.  F u r t h e r m o r e ,  the l ack  of v isual  obser  - 
vation of the flow fields was  a se r ious  handicap to thorough understanding of 
the flow f ie ld  p roces s .  

The  bas i c  assumptions  u sed  i n  a l l  of the models  to be d i s cus sed  latex 
a r e  a s  follows, un less  otherwise  noted: 

(1)  Motor and igni ter  s t r e a m s  a r e  identical  ga se s  having identical  
p roper t i es  and equal total t empera tures .  



(2) The  flows a r e  adiabatic.  

( 3 )  Both s t r e a m s  a r e  inviscid.  

( 4 )  Both s t r e a m s  always behave a s  ideal  g a s e s .  

(5) The  igniter-f low total p r e s s u r e  adjusts  to the motor-flow total 
p r e s s u r e ,  which m a y  a l so  adjust  through the bow shock, so  that 
the combined s t r  e a m s ,  following adjustment ,  a r e  everywhere  a t  
a  uniform total  p r e s s u r e .  

(6) The  flows a r e  ax i - symmet r i c  and without sw i r l  o r  rotat ion 
around the axis  of symmet ry .  

(7) The  flows a t  both igni ter  and motor  throat  a r e  one-dimensional .  

Following the in i t ia l  at tempt to const ruct  reasonably r igorous  models ,  
the e c o r l d  efforts  w e r e  di rected toward the development of ana lyses ,  which 
although not c o r r e c t  i n  the s ense  of cor re la t ing  with a l l  the physical  evidence,  
at least  sa t is f ied the m a s s  and momentum balances ,  and provided sa t i s fac tory  
answers i n  t e r m s  of the physical  geomet r ic  and p r e s s u r e  ra t io  conditions a t  
which the ma jo r  events occur red .  

3. 3. 1 Genera l  Behavior - Bimodal Operation 

Biomodal operation was  c l ea r ly  evident fo r  a l l  models  tes ted.  It  i s  
.I, 

convenient to d i scuss  the typical behavior i n  t e r m s  of the P R  v e r s u s  c"' plots 
of the combined blocking and oscil lat ions maps  ( s e e  F igu re  3 )  a s  shown 
gencrall-y i n  F igu re  24.  

F igu re  24. General  Operating Map 



In  general ,  Mode A was  observed  to exist  and unblock a t  higher PR 
values  than Mode B. It was  thus concluded that Mode A produces  the g r e a t e r  
total p r e s s u r e  l o s s  i n  the igni ter  s t r e a m .  This  allows the mo to r  flovv. to 
f o r c e  the igni ter  flow away f r o m  the motor  throat  a t  a  higher P R  for  ]Mode A 
than fo r  Mode B .  Only Mode A ex is t s  a t  high P R ,  above the onset  of os c i l -  
la t ion boundary, and tends to be a s table  flow field.  Mode B,  with i t s  lower  
igni ter  total p r e s s u r e  l o s s ,  exis ts  only a t  a  lower  P R ,  below the onset  of 
osci l la t ions ,  and can i t se l f  be  unstable.  Below the onset  of osci l la t ions ,  
Mode A unblocks only to the r ight  of the in te r sec t ion  of the in i t ia l  unblocking 
and onset  of oscil lat ions l ines .  In this  region,  the flow c l ea r ly  a l t e r r ~ a t e s  
between Mode A and Mode B. T h e  t ransi t ion f r o m  Mode A to Mode B can 
cause  reblocking,  because  the reduced  igni ter  total p r e s s u r e  l o s s  i n  Mode B 
produces  an  imbalance i n  stagnation p r e s s u r e  between the  ign i te r  and rnotor 
flows a t  the contact  su r f ace  which f o r c e s  the contact su r f ace  fo rward  until i t  
i n t e r f e r e s  with the motor  throat  flow. 

The  exact  s t r uc tu r e s  of the two types of flow a r e  not c l e a r .  In  Mode A 
i t  appea r s  that the igni ter  flow pas se s  through a fami ly  of oblique waves which 
adjust  the jet boundary s ta t i c  p r e s s u r e  to the cavity p r e s s u r e  and that a t e r -  
m ina l  normal  shock occu r s  a t  high Mach number ,  which adjusts  the igniter  
total  p r e s s u r e  to the ma in  flow total p r e s s u r e  a t  the contact  su r face .  Mode B 
f ea tu r e s  a one-shock s y s t e m  (no rma l  o r  triple-point type) which produces  
both  the separa t ion  and total p r e s s u r e  adjustment.  Th i s  wil l  b e  d i scussed  i n  
detai l  i n  the following sect ions ,  along with the constraining conditions of 
igni ter  nozzle placement  which give r i s e  to these  types of flow s t ruc tu r e s .  

Operating Maps 

The  operating maps  fo r  the bas ic  (aligned, non-modified) c o 1 b a . i ~  models  
A, B, C, D, and E and for the hot-fir ing tes t s  a r e  shown in  F i g u r e s  25 through 
30. In a l l  c a s e s  t he r e  i s  a reg ion  i n  which the motor  throat  i s  blocked (un- 
choked),  then i t  unblocks a t  a  high p r e s s u r e  ra t io ,  r ema ins  unblocked and 
s table  until the onset  of oscil lat ions,  a t  which point the throat  m a y  o r  may not 
reblock,  depending upon c" .  

The  unblocking points shown i n  the f igures ,  both in i t ia l  and final, were 
taken to b e  the p r e s s u r e  r a t i o  a t  which the l a s t  upward throat  p r e s s u r e  spike 
o c c u r r e d  ( s e e  Section 3 . 2 . 4  fo r  a d iscuss ion of o ther  c r i t e r i a  for unblocking) 
In  mos t  c a s e s  in i t ia l  unblocking was actually observed before  the l a s t  upward 
p r e s s u r e  spike. In  a l a r g e r  s ense ,  and con t ras ted  to l l f ina l l l  unblocking, 
"initial" unblocking i s  r ea l l y  the f inal  terminat ion of blocking i n  the flow 
mode which exis ts  a t  that t ime.  

Expected significant hys t e r e s i s  was  not observed  i n  the t e s t s .  There 
was  a t rend  toward the ma jo r  events occur r ing  a t  a slightly lower  p r e s s u r e  
r a t i o  for  decreas ing  igni ter  p r e s s u r e ,  and vice  v e r s a ,  but this t rend was  so  
f r agmen ta ry  that i t  was  considered insigificant .  



A Ini t ia l  unblocking 

0 O n s e t  of o sc i l l a t ions  

F l n a l  unblocking 

0 Cessa t ion  of oscillations 
A 

Figure 25. Model A Operating Map 

F i g u r e  27.  Model C Operating Map 

A Ini t ia l  unblocking 

0 Onse t  of o sc i l l a t ions  

0 F i n a l  unblocking 

0 Cessa t ion  of o sc i l l a t ions  A 
A 
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F i g u r e  26. Model B Operating Map 

E * 

~ i ~ u r e  28. Model D Operating Map 
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Figu re  29. Model E Operating Map F igu re  30. Hot-Fir ing Operating Map 

One pecul iar i ty  was  noted fo r  a l l  cold-flow tes t s  a t  and below the e'' 
whe re  the in i t ia l  unblocking and onset  of oscil lat ions occur  s imul taneously ,  
H e r e  the s ca t t e r  i s  v e r y  g r ea t .  Some of the data suggest  that a l t e rna te  
choking mechanisms  and accompanying flow fields resu l t .  At any r a t e ,  the 
pa t t e rn  i s  quite perplexing and allows considerable  speculation wi th  l i t t le  
ra t ional  understanding.  

P r e s s u r e  Distr ibution 

F igu re  31a i s  a plot showing the h i s to ry  of the wall  p r e s s u r e  d i s t r i -  
bution fo r  T e s t  124 (Model A, E"; = 1. 35)  for  a descending igni ter  total p r e s -  
s u r e  prof i le  s ta r t ing  before  in i t ia l  unblocking and ending with the igni tes  flow 
termination.  P ro f i l e  A i s  c l ea r ly  before  ini t ial  unblocking. P ro f i l e  B i s  
when the average  throat  p r e s s u r e  becomes  decoupled f r o m  the igni ter  flow, 
but while the upward spikes  s t i l l  exist ,  and B' i s  just af ter  the l a s t  upward 
spike  and the throat  i s  c l ea r ly  and finally unblocked i n  Mode A. P ro f i l e  C 
i s  immedia te ly  p r io r  to the f i r s t  of the oscil lat ions.  P ro f i l e s  D and F a r e  
of the s a m e  flow field a s  A, B,  and C ,  taken mil l i seconds apa r t ,  just before  
and af ter  a t rans i to ry  jump to the a l t e rna te  flow field,  shown by P ro f i l e  E, 



Notice that the igni ter  flow has  jumped forward  toward the motor  throat  .,, 

w i t h  sufficient s t reng th  to unchoke o r  reblock the throat .  At higher s'" sim- 

ilar behavior ex i s t s ,  but without reblocking the throat .  

F i g u r e  31. Typical  Nozzle P r e s s u r e s  (Model A )  



F i g u r e  31b shows the igni ter  nozzle p r e s s u r e  dis t r ibut ion ( r a t i o  of 
ign i te r  wal l  s ta t ic  p r e s s u r e  to motor  chamber  p r e s s u r e )  corresponding to 
the  motor  nozzle p r e s s u r e  r a t i o s  of F igu re  31a. The  nozzle ini t ial ly flows 
full a t  P ro f i l e  A i n  Mode A. As the igni ter  chamber  p r e s s u r e  d e c r e a s e s ,  
the  nozzle becomes  overexpanded,  and the flow separa t ion  moves  fo rward  
toward the igni ter  throat. At the jump to Mode B a t  P ro f i l e  E, the igni ter  
wal l  p r e s s u r e  distr ibution a l so  exper iences  a jump, then r e t u r n s  to the lower 
p r e s s u r e  l eve l  a t  P ro f i l e  F. I t  should b e  noted that the p r e s s u r e  level  a t  
P ro f i l e  E i s  lower  than that which' is  cha rac t e r i s t i c  of Mode B, because  the 
oscil lat ions se lec ted  h e r e  a s  an  example,  i. e . ,  P ro f i l e s  D to E to F, w e r e  of 
such  sho r t  durat ion that the Mode B s t ruc tu r e  did not fully develop before  
a l ternat ing back to Mode A. 

Flow F ie ld  Models 

I t  i s  v i r tual ly  imposs ib le  to ca tegor ize  and even to identify al l  of the 
different  behavior pa t te rns  and cha rac t e r i s t i c  flow s t ruc tu r e s  which exis t  i n  
this  ex t remely  complex and f requent ly  unstable flow-field in teract ion.  This  

appea r s  to be especia l ly  t rue  i n  the vicinity of the in te r sec t ion  of the init ial  
unblocking and onset  of oscil lat ion l ines .  F igu re  32 depicts  the flow fields 

which a r e  believed to be  cha rac t e r i s t i c  of Modes A and B. These  g rea t ly  
simplif ied models  a r e  represen ta t ive  of the m a i n  f ea tu r e s  of the flow fields 
and do not ent i re ly  account for the in te rac t ion  of the var ious  waves within 
the  igni ter  jet. The  two sketches  of Mode A show different  s t r uc tu r e s ,  which 
apply to conditions of low and high igni ter-nozzle  s ta t i c  back p r e s s u r e s  (with 
r e s p e c t  to igni ter  total p r e s s u r e ) .  The  key f ea tu r e s  of the flow fields a r e  
the s ame ,  however.  The total p r e s s u r e  adjustment to the m a i n  s t r e a m  total  
p r e s s u r e  occu r s  p r i m a r i l y  through a normal  shock, while the separa t ion  
adjustment  to the s ta t i c  back p r e s s u r e  o r  cavity p r e s s u r e  occu r s  through 
a different  oblique wave sys  tem.  These  may  be e i ther  expansion waves 
when the nozzle i s  underexpanded o r  shock waves  f r o m  the l ip  o r  within the  
nozzle when i t  i s  overexpanded. This  i s  i n  dist inct  con t ras t  to Mode B i n  
which the flow both s epa ra t e s  and adjusts  total p r e s s u r e  through a single 
no rma l  shock. These  flow f ie lds ,  and the conditions during which they occu r ,  
wi l l  be d i scussed  i n  g r ea t e r  detai l  i n  following subsect ions .  

I t  i s  emphasized that blocking assoc ia ted  with the flow f ie lds  p ic tu red  
i n  F i g u r e  32 occu r s  f r o m  the gasdynamic constr ic t ion i n  the nozzle exit cone, 
i n  the absence of penetrat ion of the motor  throat .  Th is  happens a t  re la t ively  
high s''' values  whe re  t he r e  i s  r o o m  for the igni ter  flow to adjust .  At the 
lower  s':' values ,  however,  the re  i s  considerable  evidence to indicate  that 
penetra t ion of the motor  throat  plane by the igni ter  jet  accompanies  the 
second constr ic t ion of the ma in  flow i n  the nozzle. In this si tuation i t  i s  
believed that viscous in teract ions  between the s t r e a m s  become m o r e  
significant. 



f 
contac t  s u r f a c e  

/ A - s h o c k  wave, 

( a )  Mode A, Ign i te r  underexpanded 

(b)  Mode A,  Ign i te r  overexpanded and  s e p a r a t e d  

( c )  Mode B, Predominant ly  n o r m a l  shock  

F igu re  32. Representa t ive  Flow Fie lds  

3. 3; .  2 Initial Unblocking 

T h e r e  a r e  s eve ra l  fac to rs  which aid i n  understanding and simplify the 
modeling of the init ial  unblocking event, i n  con t ras t  to the other  events:  

(1) The  flow condition i s  s table  (except for  the sma l l - s ca l e  mo to r -  
throat  oscil lat ions previously  d i scussed) .  

( 2 )  At the moment  of unblocking the main-motor  flow suf fe rs  no 
significant total p r e s s u r e  l o s s  because  the in teract ions  a r e  near  
the throat  and the Mach number of the s t r e a m  i s  everywhere  
near  sonic.  

(3) At the high c'i' values the igniter  nozzle flows full ,  so  that  the 
total p r e s s u r e  adjustment of the igni ter  flow occu r s  wholly 
outside of the nozzle. 



F o r  m o s t  of i t s  span,  the in i t ia l  unblocking l ine  i s  r egu l a r  and near ly  
l i nea r ,  even though the igni ter  flow i n  Mode A t rans i t ions  f r o m  underexpanded 
a t  a high €'", to overexpanded a t  a lower  c ' ~ .  The re fo re ,  i t  was  decided to  

model  the high s':' condition a s  being the m o s t  s t ra igh t forward  and r e p r e -  
senta t ive  of the whole c" span  of in i t ia l  unblocking. 

In  the absence  of v isual  observatio'ns of the in te rac t ing  flows, the 
modeling i s  based  upon the m e a s u r e d  p r e s s u r e  distr ibutions i n  the motor  
nozzle and upon the work  of c h a r w a t l l  with opposed unconfined supe r -  
sonic s t r  e ams .  

Nozzle P r e s s u r e  Distr ibution 

F i g u r e  33 i s  a plot of the nozz le -pressure  dis t r ibut ions  for  T e s t  4 2  
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(Model A, c"' = 1. 62) spanning the init ial  unblocking event. T h e  throat  i s  
c l ea r ly  blocked, o r  unchoked, a t  P ro f i l e  A. The  p r e s s u r e  r a t i o  i s  g r e a t e r  
than 0 .6 ,  and i t  i n c r e a s e s  to 0 .73  a t  tap 9 ,  being obviously subsonic.  P r o -  
f i le  B i s  a l so  subsonic,  but the p r e s s u r e  r a t i o  i s  slightly reduced.  It appears  
that the choke point fo r  these  flows i s  i n  the a r e a  of tap 10, whe re  tlie p r e s -  
s u r e  r a t i o  i s  approximately 0. 528. P ro f i l e  C shows a change i n  p r e s s u r e  
distr ibution,  with the p r e s s u r e  r a t i o  a t  tap 8 sl ightly below that  a t  tlie throat .  
Th is  sugges t s  that the throat  flow i s  choked, but only par t i a l ly  i n  the s e n s e  
that i t  could b e  choking only during the lower  port ion of the minor  tkiroat- 
p r e s s u r e  oscil lat ions d i scussed  i n  Section 3. 2 . 4 .  F u r t h e r m o r e ,  the p r e s s u r e  
a t  tap 9 i s  g r ea t e r  than a t  the throat ,  indicating that the flow has  passed  
through another sonic point, and p a s s e s  through yet another throat  i n  the 
vicinity of tap 10. P ro f i l e  D p r o g r e s s e s  i n  the s a m e  fashion,  with the second- 
a r y  throat  near  tap 10 being of near ly  equal  effect (equal a r e a )  to the geo-  
m e t r i c  motor  throat .  At P ro f i l e  ( I ) ,  the motor  throat  flow appears  to have 
been stabil ized,  with the throat  p r e s s u r e  r a t i o  having reached  a lower  Pi-mit- 
ing value.  Also,  the p r e s s u r e  ra t io  a t  points downs t ream equals,  but never 
exceeds ,  the p r e s s u r e  r a t i o  a t  the throat .  The re fo re ,  the secondary throat ,  
genera ted  by gasdynamical  const r ic t ion of the ma in  s t r e a m  against  the nozzle 
wal l  by  the igni ter  flow f ie ld ,  i s  of equal effect on the flow a s  the motor  throat .  
As the igni ter  flow continues to tai l  off, i n  the absence  of osci l la t ions ,  the 
motor  throat  i s  now independent of the opposed flow in te rac t ions  and the con- 
s t r i c t ing  effect of the igni ter  jet.  P ro f i l e  (1) i s  the in i t ia l  unblocking point 
se lec ted  f r o m  examination of the t r ace s ,  using the c r i t e r i on  previously  
descr ibed ,  that final unblocking occu r s  when the upward throat  p r e s s u r e  
spikes  have cea sed  to exist .  Note, however,  that  the actual  p r e s s u r e  ratio 
i s  about 0. 55, ins tead  of the theoret ical  value of 0. 528. It i s  the  ru l e ,  r a the r  
than the exception, that f requent ly  t he r e  i s  considerable  d i sagreement  in the 
unblocking p r e s s u r e  r a t i o s  se lec ted  by  u s e  of the var ious  c r i t e r i a .  Usually 
the d i sagreement  i s  not significant, but i t  occasionally i s ,  making i n t e r -  
p re ta t ion  of the data difficult. 



Figu re  34 shows the nozzle p r e s s u r e - r a t i o  distr ibutions for  a l l  of the 
cold-flow models  a t  in i t ia l  unblocking points se lected f r o m  the p r e s s u r e  
spilce cr i t e r ion .  The  mos t  important  fea tu re  of these  plots i s  the re la t ive  
constancy and uniformity of the p r e s s u r e  distr ibutions for  a l l  models  and 
al l  E '  values g r e a t e r  than about 1. 5. Th is  s t rongly indicates  that, a t  l e a s t  
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for the higher c ' '  values,  the flow at  the terminat ion of in i t ia l  blocking i s  
charac te r ized  by the double throat  sy s t em descr ibed  i n  the previous p a r a -  

g raph ,  and with the qualification that the throats  a r e  of equal  a r e a  ( in  the 
absence of ma in  s t r e a m  total p r e s s u r e  l o s s ) .  Additionally, f r o m  the constant  
axial position of the distr ibutions,  and hence the second choke point, i t  can 
b e  assumed that the flow fields f r o m  the throat  to the contact .,, sur face  with 
the igni ter  flow a r e  near ly  ident ical  for  a l l  models  and a l l  c'" grea t e r  than 
s o m e  iower  l imi t  around 1. 50. It  i s  a lso  worthy of note that the p r e s s u r e  
i s  near ly  constant between the throats .  
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F i g u r e  34. In i t ia l  Unblocking P r e s s u r e  Dis t r ibut ions  



Flow-Fi,eld Model and Analysis  

I n  accordance with the above observat ions  and in te rpre ta t ions ,  a  model 
of the flow-field s t ruc tu r e  has  been proposed and u sed  a s  the ba s i s  fo r  the 
analysis  of the in i t ia l  unblocking event. The genera l  fea tu res  of the model  
a r e  a s  shown i n  F igu re  35. The  ma in  flow i s s u e s  f r o m  the throat ,  which i s  
sonic,  and p a s s e s  through the second throat  f o rmed  by  the contact su r f ace  
and the nozzle wall. The igni ter  flow i s s u e s  f r o m  the jet exit,  flowing full 
ancl undisturbed.  I t  then pa s se s  through a normal  shock sufficient to adjust  
the total p r e s s u r e  to the ma in  flow total p r e s s u r e ,  turns  subsonically to the 
sonic point, and continues to expand supersonical ly .  The  behavior of the 
igniter jet i s  general ly  modeled af ter  the observat ions  of c h a r w a t l l  of supe r -  
sonic je t s  i ssuing into a counterflowing supersonic  s t r e a m .  

F igu re  3 5. Analytical Model-Initial Unblocking 

In  addition to the assumptions  l i s t ed  a t  the beginning of this sect ion 
which apply to al l  the analytical  models ,  the following a r e  key fea tures  of 
the init ial  unblocking model: 

(1) The  igniter  flows full a t  i t s  exit and i s s u e s  a s  sou rce  o r  r ad i a l  
flow which p e r s i s t s  until the normal  shock (within the port ion 
of the jet which i s  undisturbed by expansion o r  compress ion  
waves  f r o m  the nozzle exit) .  

( 2 )  T h e  igniter  flow adjusts  to the total p r e s s u r e  of the ma in  flow 
through a single normal  shock. Even though the Mach number 



of the s t r e a m  i s  not uniform,  owing to expansion o r  compi:essioil 
waves  enter ing into i t  f r o m  the jet exit,  i t  i s  a s s u m e d  that the 
effects of such  non-uniformity on the total p r e s s u r e  a r e  negligible. 

( 3 )  Rega rd l e s s  of flow s t r u c t u r e  between motor  throat  and contact 
su r face ,  the nozzle wal l  p r e s s u r e  between the motor  throat  and 
secondary  choke point i s  constant  and equal to the theoret ical  
c r i t i c a l  p r e s s u r e .  

(4) The  total p r e s s u r e  of the m a i n  s t r e a m  i n  the nozzle i s  constant  
and equal to the  chamber  total p r e s s u r e .  

(5)  T h e  flow a t  the secondary  choke point i s  not para l l e l  to the nozzle 
wal l ,  but r a t h e r  the s t r eaml ines  follow a fami ly  of hyperbolas 
sat isfying the condition that, a t  the sonic point, the der ivat ive  
of the a r e a  of each  s t r e a m  tube along i t s  flow direct ion i s  equal 
to ze ro .  

(6) T h e  igniter  no rma l  shock i s  planar out to a rad ius  equal to the 
jet exit r ad ius ,  whence i t  follows a c i r cu l a r  a r c  whose cen te r  
i s  the jet exit l ip.  

( 7 )  T h e  f r e e  subsonic boundary of the jet ,  behind the shock wave 
in te r sec t ion  with the boundary, m a y  undergo a t u rn  of f ini te 
r ad iu s ,  without a change i n  p r e s s u r e  along that f r e e  boundary. 

Additional detai ls  of the model  and descr ipt ion of the analysis  a r e  given 
i n  the Appendix. The  calculations a r e  pe r fo rmed  by  sett ing the de s i r ed  geo- 
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m e t r i c  var iab les ,  including E'". 

A t r i a l  P R  i s  se lec ted  and the location of the shock and i t s  shape are 
calculated,  followed by se lect ion of a t r i a l  cavity p r e s s u r e .  The  f r e e  bound- 
a r y  i s  determined,  along with  the a r e a  of the secondary  throat .  The cai-  
culation procedure  i s  repeated,  i t e ra t ing  on both P R  and the cavity p r e s s u r e ,  
until  the conservat ion of m a s s  and momen tum and the condition of sonic flow 
a t  the secondary  throat  a r e  simultaneously sa t is f ied.  

T h r e e  var iab le  f ac to r s  w e r e  u sed  to adjust  the calculated r e s u l t s  to 
achieve the be s t  cor re la t ion  with the exper imental  r e su l t s :  the r ad iu s ,  R, 
of the subsonic turn;  a mul t ip l ier  on x sh  to adjust  the shock standoff d i s -  
tance;  and a mul t ip l ier  l e s s  than 1. 0, to account fo r  l o s s  of axial  momentvim 
a t  the second throat  due to sw i r l  of the flow f ie ld  about the axis  of sj imrnetry 
o r  to other  non-normal inclination of the flow direct ion to the su r f ace ,  S.. 

Corre la t ion  of Analvtical Resu l t s  with E x ~ e r i m e n t a l  Data 

In genera l ,  agreement  between the analysis  and the exper imental  P esui ts  
i s  good. F i g u r e  36a shows a compar i son  between the exper imenta l  data of 



Model A and calculated points. Two s e t s  of t e s t  data  points a r e  shown. One 
s e t  r e p r e s e n t s  the terminat ion of the in i t ia l  blocking points, while the other  
s e t  cons i s t s  of the points a t  which unblocking, even though t empora ry ,  f i r s t  
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occu r s .  I t  appears  that,  for  c'" g r e a t e r  than 1. 4, the ini t ial  unblocking p r e s -  
s u r e  r a t i o s  may  be  approximated by a s t ra ight  l ine ,  and that neither the 
s ca t t e r  i?or the difference between the two s e t s  of data i s  g rea t .  However,  
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at  lower c:'' va lues ,  the behavior appears  to be  different ,  probably resul t ing 
f r o i n  an  a l t e r ed  flow s t ruc tu r e .  Analytical data a r e  a l so  shown genera ted  
witn the combination of f ac to r s  which gives the bes t  cor re la t ion  with the map  
of Figure 36a and a l so  wi th  the cavity p r e s s u r e .  The  values of these  f ac to r s  
a r e :  

Shock standoff factor  = 1. 5 

Secondary throat  momentum factor - 0. 95.  

The  individual effect of these  p a r a m e t e r s  i s  shown i n  F igu re  37 .  

Limit of experimental data 
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2 . 2  1 .0  1 . 2  1.4 1.6 1. 8 2 . 0  2 . 2  
Ei; €':: 

(c) Model C 
(d) Mode! D 

F igu re  36. Comparison of Init ial  Unblocking Analysis  and Exper iment  
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F i g u r e  36. Compar i son  of Initial Unblocking Analysis  and 
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(b) Shock Standoff Distance Fac tor  
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(c)  Secondary Throat Momentum F a c t o r  

F i g u r e  3 7. Effects  of Analytical Model P a r a m e t e r s  

The  only one which produces  a significantly a l t e r ed  s lope of the curve 
i s  the shock dis tance fac tor .  
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The  recons t ruc ted  flow f ie lds  fo r  e"' of 1. 5 and 2.  0 f r o m  the curve of 
F i g u r e  36a a r e  shown i n  F igu re  38. Note that, although the shock standoff 
dis tance adjusts  a s  e'" va r i e s ,  this adjus tment  i s  insufficient  to keep the 
secondary throat  posit ion the s a m e  for  all e". Th is  i s  a slight departure 
f r o m  the exper imental  r e su l t s  a s  shown i n  F igu re  34a. 



normal shock 

F i g u r e  38. Calculated Flow F ie lds  at  Initial Unblocking, Model A 

A compar i son  i s  shown i n  F i g u r e  36b through f  between the t ransposed  
exper imenta l  data  and analytical  r e s u l t s ,  using the s a m e  f ac to r s  enumera ted  
above for  a l l  o ther  models .  Cor re la t ion  i s  good fo r  Models C,  D,  and E. 
Both the slope and posit ion of the cu rve s  ag r ee .  However,  the s lope of the 
curves  fo r  Model B and the hot-f ir ing (HF)  t es t  a r e  considerably  i nco r r ec t .  
The only di f ference between Model B and Model D i s  the igni ter -nozzle  
expansion r a t i o  ( 9 . 2  and 7 . 0 ,  r e spec t ive ly ) .  The  H F  model  has  a n  even 
g r e a t e r  expansion of 10. 0, but a l so  ha s  g rea t ly  different  ga s  p rope r t i e s  
(y = 1. 18 vs 1 .4) .  I t  appea r s  l ikely  that the effect of gas  p rope r t i e s  i s  l e s s  
than that of igni ter  expansion r a t i o  because  of the  behavior of Model B 
(y 1.  4). The re fo r e ,  i t  s e e m s  that the analytical  model  becomes  l e s s  valid 
at s o m e  E g r e a t e r  than 7. 0. An a t tempt  was  made  to c o r r e c t  this  deficiency i 
by incorporat ing a curved  jet boundary consis tent  wi th  the data  of Love,  et  
a:, '? Rowever,  wide var ia t ions  i n  the r ad iu s  of cu rva tu r e  of the boundary 
produced an  effect only on the cavity s t a t i c  p r e s s u r e ,  but not on  the unblocking 
p r e s s u r e  ra t io .  

It i s  believed that a  be t t e r  definition of the cen te r l ine  igni ter  Mach 
number distr ibution would improve  the validity of the model a t  the higher 
expansion r a t i o s .  Also the assumptions  of the shock shape and uniform total 
p r e s s u r e  distr ibution a r e  obviously contradic tory .  However,  t ime  allowed 
within the p r o g r a m  did not allow fo r  even superf ic ia l  evaluation of these  
f ac to r s  o r  o the r s  which perhaps  could a l so  r e s u l t  i n  the e r r o r  noted. 



3. 3. 3 F ina l  Unblocking 

Studies w e r e  conducted to update. the final unblocking model developed 
under Contract  NAS-3-10297. That  unblocking model  was  ba sed  upon a mass 
and momentum balance f o r  a control  volume s imi l a r  to that shown i n  Figure 

39. T h e  model  fea tu red  a single normal -  shock igniter-f low separa t ion  and 
total p r e s s u r e  adjustment  mechan i sm (Mode B )  and predic ted in i t ia l  un-  
blocking P R  values which ag reed  reasonably well  with exper imental  data.  
T h e r e  was  d i sagreement  between -assumed model  control  volume boundary 
conditions and corresponding exper imental  values .  Init ial  efforts  during 
the c u r r e n t  p r o g r a m  w e r e  d i rec ted  toward changing the  previous  model by  
incorporat ing m o r e  accu ra t e  boundary conditions. Th is  included m o r e  
accu ra t e  modeling of the igni ter-nozzle  shock configuration and the u s e  o i  
exper imental ly  der ived motor-nozzle  p r e s s u r e  distr ibutions.  

F i g u r e  39. F ina l  Unblocking Control  Volume 

The init ial  modeling efforts  w e r e  not successful  because  of an inabil i ty 
to accura te ly  define conditions a t  the s lant  a r e a .  Analysis  indicated that the 
s lant  momentum vector contained a significant component not normal  to  the 
s lant  a r e a .  Studies to analytically model the slant  a r e a  flow did not. provide 
r e su l t s  which could be  ra t ional ly  justified with the l imi ted mo to r -  and  igni ter  - 
nozzle p r e s s u r e  data.  



Subsequent studies w e r e  di rected toward modifying the previous model 
by IJsiilg m o r e  near ly  c o r r e c t  ign i te r  p r e s s u r e  and momentum t e r m s .  This  
modified model provided a  conservat ive  approximation of the unblocking p r e s -  
s u r e  r a t i o s  f o r  a l l  cold-flow model configurations and the solid-propellant  
motor data.  However,  t he r e  w e r e  d i sagreements  between the exper imental  

a n d  model boundary values for some  conditions. The  fact  that the model  did 
give apprclximately c o r r e c t  values i s  a t t r ibuted to the fact  that: (1 )  g r o s s  
r 'eatures of model  i n  genera l  agreed  with the  exper imental  r e s u l t s ,  ( 2 )  the 
model  was in ternal ly  consis tent ,  and ( 3 )  f a i l u r e s  to exactly model  conditions 
a t  one control  volume boundary w e r e  off-set  by a  compensating e r r o r  on 
another boundary. 

The  following sect ions  p resen t  observed exper imental  conditions a t  
f inal  unblocking and an  analysis  of the modified f inal  unblocking model.  

3. 3 .  3. 1 Flow-Field Analysis  

l ~ n i t e r  Nozzle 

Final unblocking occu r r ed  a t  re la t ively  low p r e s s u r e  ra t ios  af ter  a  
perlod of unstable flow during which the motor  a l t e rna te ly  unblocked i n  
Mode P and reblocked i n  Mode B. F igu re  40 presen ts  typical igniter  nozzle 

J ,  

p r e s s u r e  data a t  the point of f inal  unblocking (Mode B )  fo r  c"' locations of 
1 . 2 0 ,  1 . 3 5 ,  and 1. 50. F igu re  41 shows th ree  dist inct  flow s t ruc tu r e s  which 
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are believed to cor respond  to the p r e s s u r e  distr ibutions a t  these  E ' '  values .  
F o r  low c I' values (1.  20) the igni ter  throat  was  ei ther choked o r  unblocked 
wish subsonic flow separat ion.  F o r  this c a se  the r equ i r ed  igni ter  total p r e s -  

.Ir 

s u r e  l o s s  occu r r ed  through viscous mixing.  F o r  in te rmedia te  E"' values 
(1 .  35) a s t rong shock exis ts  within the igni ter  exit cone with flow separa t ion  
immediate ly  downstream of the shock. At high c:" locations (1. 50) i t  appeared  
l h a l  a Iriple-point shock o r  s im i l a r  configuration ex i s t s .  

Motor Nozzle 

Motor-nozzle wal l  p r e s s u r e s  w e r e  i n  a n  osc i l l a to ry  s ta te  a t  the t ime 
oL final unblocking. Consequently the p r e s s u r e  distr ibution corresponding 
to the l imit ing unblocking mode  was difficult to se lec t .  F i g u r e  42 p r e sen t s  
p r e s s u r e  data for  th ree  values.  The only significant f ea tu r e  of these  
profi les was  the fact  that the s lant  a r e a  exhibited a  sonic o r  near ly  sonic 
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pressure ra t io  fo r  a l l  c"'. 



-- full nozzle 
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F i g u r e  40. F ina l  Unblocking Igniter-Nozzle P r e s s u r e  Data 
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F igu re  41. F ina l  Unblocking Igniter-Nozzle Flow St ruc tures  
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F i g u r e  42. Motor -Nozzle P r e s s u r e  Distr ibution i n  F ina l  Unblocking 



A nalvtical  Model 

The  analytical  model was  based  upon a m a s s  and momentum balance 
taken on motor  and igni ter  control  volume a s  shown i n  F i g u r e  39. ALssurnp- 
tions m a d e  i n  constructing the model  we re :  

(1)  Flow entering and leaving the  control  volume m a y  be descr ibed  
by ax i symmetr ic  and i sen t rop ic  flow re la t ions .  

( 2 )  P r e s s u r e s  a r e  constant  a c r o s s  main-motor  throat  and s lant  a r e a .  

(3 )  P r e s s u r e  distr ibution along the main-motor  exit cone a s s u m e s  a 
pa r  abo1i.c shape.  

( 4 )  Any main-motor  flow shocks occur  a t  sufficiently low Mach 
numbers  so  that the total p r e s s u r e  l o s s e s  may  be  neglected. 

(5 )  A normal  shock occu r s  within the igni ter-nozzle  exit cone at 
an  approximate  igni ter  jet a r e a  such  that the igni ter  total p r e s -  
s u r e  i s  equal to the ma in  motor  p r e s s u r e .  

(6) The  igni ter  flow sepa ra t e s  immediate ly  af ter  the normal  shock 
and i t  m a y  b e  descr ibed  by a constant a r e a  s t r e a m  with con.- 
s tant boundary p r e s s u r e .  

( 7 )  P r e s s u r e  fo r ce s  a c r o s s  igni ter  exit a r e  constant  a c r o s s  the 
s t r e a m  tube and a r e  parabol ic  i n  shape f r o m  the s t r e a m  tube 
to the igni ter  lip. 

(8)  T h e  slant  a r e a  flow i s  full  and supersonic .  

T o  es tab l i sh  the applicability and accu racy  of this  model,  i t  i s  neces - 
s a r y  to f i r s t  compare model  predictions with exper imental  r e su l t s  and 
finally to compare  the model  with exper imental  data  to find out the degree  
of agreement  of the bas ic  assumptions .  

Compar i son  of predic ted model  values  with exper imental  r e su l t s  wi th  
the cold-flow t e s t s  indicated good agreement  fo r  low s':' values ,  wi th  less 

J. 

accu racy  a t  in te rmedia te  and high s'" values,  a s  shown in  F i g u r e  43. 

This  behavior of the analyt ical  model  holds fo r  a l l  the igni ter  models, 
Compar i son  of the model  with solid-propellant  motor  data  revea led  a con- 
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se rva t ive  prediction with a mode ra t e  d i sagreement  for  a l l  s "  values .  

Model assumptions  which exhibited the g r ea t e s t  d i sagreement  w e r e  the 
motor  nozzle p r e s s u r e  distr ibutions and the igni ter  nozzle p r e s s u r e  and 
momentum distr ibution t e r m s .  The  motor  wall p r e s s u r e  i n t eg ra l  i n  a l l  c a s e s  
was  lower  than the exper imental  values .  However,  this  e r r o r  was  probably 



o i f se t  b y  a compensating e r r o r  i n  the s lant  a r e a  momentum t e r m  which was 
necessary to obtain m a s s  and momentum balance. The  model  igni ter  shock 
ccnfiguration ag reed  fa i r ly  well  with the exper imental  values a t  modera te ly  
low and in te rmedia te  E'I: values.  However,  a t  high c::: locations exper imental  
data indicated that a tr iple-point  shock s t r u c t u r e  probably exis ted ins tead  of 
modeled normal  shock. This  i s  probably the r e a s o n  for  the ma jo r  d i sagree-  
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merit hetween model and exper iment  a t  high s"' values.  
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Figu re  43. Comparison of Exper iment  and Analysis  i n  F ina l  Unblocking 



3 . 3 . 4  Oscil lat ions 

T h e  data  evaluation and analytical  modeling of the osc i l l a to ry  behavior 
w e r e  or iented toward achieving two specific goals:  determining the PEP and 
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s'" conditions and flow-field s t r u c t u r e  which produced the onset  of osci l la-  
tions themselves  and thei r  effects  on the motor -nozz le  p r e s s u r e  distr ibution.  
Two types of oscil lat ions w e r e  found to exis t .  Major oscil lat ions occu r r ed ,  
a s  have been previously  descr ibed ,  a s  the r e su l t  of a l ternat ion between two 
dist inctly different fIow f ie lds ,  Modes A and B, and var ia t ions  of these  types.  
Secondly, minor  oscil lat ions w e r e  frequently,  although not always,  observed  
e a r l y  i n  the post-ignition period. E i for t s  w e r e  concentra ted a lmos t  ent i re ly  
on the ma jo r  oscil lat ions and the conditions under  which they develop. 

I t  appeared  that the ma jo r  flow-field oscil lat ions w e r e  produced by 
inherent ly  unstable separa t ion  of the overexpanded igni ter  nozzle flow. 
Consequently, the ma jo r  emphasis  was  placed upon evaluating and modeling 
the igni ter  nozzle flow, independent of the nozzle flow f ie ld  and the i n t e r -  
actions between the two. 

The  f i r s t  a t tempt  to identify the igni ter  flow-field s t ruc tu r e s  just  before  
and during the oscil lat ions was  to const ruct  flow-field models  which produced 
the observed igni ter  -nozzle p r e s s u r e  distr ibutions and the assoc ia ted  P R  
values .  Th i s  approach fai led,  u n i v ~ r s a l l y ,  apparent ly  because  of tE1e s impl i -  
fying assumptions  which w e r e  required.  

T h e  second approach was  to develop a s e r i e s  of t h r ee  different types 
of separa t ion  and total p r e s s u r e  adjustment models  whose genera l  behavior 
under  varying conditions could b e  compared  with exper imental  r e su l t s .  This  
approach was  success fu l ,  to the degree  that the flow f ie ld  qualitatively 
behaved i n  a fashion s imi l a r  to that of the Mode A model  before  osci l la t ions .  
During oscil lat ions,  the flow f ie ld  a l ternated between the Mode A type (oblique 
shock) and the Mode B s t ruc tu r e  behaving m o r e  near ly  l ike  a typical. normal  
shock with o r  without l ambda  feet .  

Modeling of the overa l l  motor-nozzle  flow field was  unsuccessful ,  
apparent ly  because  of insufficient knowledge of the combined flow condi tionas 
i n  the s lant  a r ea .  

3. 3 .  4. 1 Analysis  of Exper imental  Data 

General  Cha rac t e r i s t i c s  

The  ign i te r -  and motor-nozzle  p r e s s u r e  osci l la t ions  w e r e  genera l ly  
s imi l a r  in 'na ture  for  a l l  igni ter  model  configurations. The  minor  os  c i l -  
la t ions  w e r e  cha rac t e r i zed  by mode ra t e  motor-nozzle  p r e s s u r e  osci l la-  
tions with basical ly  s table  igni ter  nozzle flow. The  ma jo r  oscil lat ions were 
cha rac t e r i zed  by high-amplitude p r e s s u r e  oscil lat ions i n  both igni ter  and 
mo to r  nozzles. 



Igniter  -nozzle p r e s s u r e  oscil lat ions during per iods  of unstable sepa-  
r a t ed  igni ter-nozzle  flow w e r e  predominately longitudinal i n  cha rac t e r .  
However,  l a t e r a l  and rota t ional  components w e r e  often noted, especia l ly  
dur ing misal ignment  t es t s .  Motor-nozzle p r e s s u r e  oscil lat ions appeared  
to r e su l t  f r o m  response  of the motor-nozzle  flow field to the pulsating move- 
ments  of the ign i te r  jet. Like  the igni ter  nozzle, the predominant osci l la-  
tions w e r e  longitudinal i n  nature  with some  a s y m m e t r i c  behavior.  

The minor  nozzle p r e s s u r e  oscil lat ions w e r e  not always observed  and 
then only before  the onset  of ( m a j o r )  oscil lat ions.  The amplitudes w e r e  
l a r g e s t  when the motor  nozzle was  blocked. After in i t ia l  unblocking, the 
motor  - nozzle oscil lat ion amplitudes w e r e  at tenuated and somet imes  cea sed  
al together before  the onset  of oscil lat ions.  The igni ter  -nozzle flow var ied  
between full and s table ,  separa ted  and s table  o r  s epa ra t ed  and s table  with 
occasion,al mode ra t e  per turbat ions .  Because  of the random exis tence of 
the minor  oscil lat ions and thei r  re la t ive  insignificance,  with r e spec t  to the 
ma jo r  oscil lat ions,  they will not be  d i scussed  fu r the r .  All r e f e r ences  to 
oscil lat ions wil l  be  understood to mean  ma jo r  oscil lat ions unless  otherwise  
noted, Refe rences  to s table  o r  unstable flow will m e a n  operation e i ther  
without o r  within the region of m a j o r  osci l la t ions ,  respect ively .  

The t ime-  dependent behavior of the ( m a j o r )  oscil lat ions was signifi- 
cantly affected by the level  and r a t e  of decay of P R .  When the P R  reached  
a plateau level  a t  the oscil lat ion onset  boundary, o r  was  decaying slightly, 
the p r e s s u r e  oscil lat ions w e r e  in termit tent .  Somet imes this in te rmi t tency  
was  charac te r ized  by momenta ry  unstable p r e s s u r e  pulsations and a t  o ther  
t imes  b y  a l t e rna te  per iods  of s table  and unstable flow. (See F igu re  18. ) 
When the igni ter  chamber  p r e s s u r e  decayed into the region of unstable P R ,  
the oscil lat ions w e r e  continuous. The  magnitude of the oscil lat ions w e r e  
propor t ional  to the P R ,  i. e.  , for re la t ively  s t ronger  igni ter  flow fields 
the oscil lat ions w e r e  l a r g e r  i n  amplitude. Typical  continuous oscil lat ions 
ax- e shown i n  F igu re  20 .  

3 .  3 .  4. 2 Igniter-Nozzle Flow-Field Analysis 

Igniter  Nozzle P r e s s u r e  Distr ibution 

Typical  igni ter-nozzle  wa l l -p r e s su re  distr ibutions a t  various igni ter  to 
motor  p r e s s u r e  r a t i o s  a r e  shown i n  F igu re  44 f o r  Model A .  At the highest  
p r e s s u r e  r a t i o  of 5. 09 the nozzle was  flowing full. As the p r e s s u r e  r a t i o  
( igniter  (chamber p r e s s u r e )  decreased ,  the igni ter  nozzle flow became m o r e  
overexpanded and began to separa te .  The separat ion point moved p rog re s -  
sively u p s t r e a m  to lower  nozzle a r e a  r a t i o s  until i t  r eached  the l a s t  s table  
p r e s s u r e  prof i le  a t  P R  = 2. 66.  After the onset  of oscil lat ions the p r e s s u r e  
prof i les  appeared to osci l la te  between two ex t r emes  a s  i l lus t ra ted  by the 
two different p r e s s u r e  distr ibutions a t  P R  = 1. 59. The lower  p r e s s u r e -  
distr ibution curve  a t  P R  = 1. 59 cor responds  to supersonic  p r e s s u r e  ra t ios  
while the upper curve  i s  predominately subsonic. 
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F i g u r e  44. Igniter-Nozzle Wall-Pr e s s u r e  Distr ibutions 

The  igni ter-nozzle  p r e s s u r e  distr ibutions did not a g r e e  with t h e  mono- 
tonically inc reas ing  wal l  p r e s s u r e s  af ter  separa t ion  which a r e  normal ly  
expected of overexpanded conical  nozzles8.  99 l o ,  13. Attempts to identify 
igni ter  flow fields which would produce these  typical p r e s s u r e  distr ibutions 
w e r e  not successful .  These  unusual  distr ibutions probably r e su l t  from dis -  
tor t ion of the igni ter  flow field by the ex te rna l  flow-field s t ruc tu r e  and p r e s -  
s u r e  f ie ld ,  o r  by  oscil lat ions of such  high f requency that no flow field could 
develop fully. 

Igniter-nozzle p r e s su re - r a t i o  distr ibutions fo r  var ious  s':' locations 
a t  the  onset  of oscil lat ions a r e  shown i n  F i g u r e  45 for  Models A through E. 
T h e s e  data indicate  that a t  the onset  of oscil lat ions the igni ter-nozzle  p r e s s u r e -  
r a t i o  dis t r ibut ion for a given model i s  independent of €':' location. This  p r e s -  
s u r e  prof i le  uniformity  indicates that the igni ter-nozzle  flow field wj.t&n the 
nozzle i s  identical  fo r  a l l  €'I' locations,  and suggests  that the external  i g r i t e r  
jet flow shape i s  l ikewise  constant .  In this  eventuality the change of PR for 
onset  of oscil lat ions with c'I' would depend only upon the mo to r  total p r e s s u r e  
adjustment  a c r o s s  the ign i te r  bow-shock, assuming  that the contact  surface 
posit ion i s  fixed with r e spec t  to the ign i te r .  
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F i g u r e  45. Igniter-Nozzle P r e s s u r e  Distr ibutions a t  Onset  of Oscil lat ions 



I ~ n i t e r  Flow F ie ld  S t ruc ture  

The  in i t i a l  approach  to r econs t ruc t  the Mode A and B flow fields Prom 
the exper imental  wal l -pr  es  s u r e  distr ibution fai led because  of an  inabil i ty 
to define the igni ter-nozzle  flow separa t ion  point and flow-field total p r e s -  
s u r e  l o s s .  A second approach  was  the se lect ion and analysis  of th ree  
plausible  flow fields f r o m  other  separa ted  nozzle flow s tudies .  The  t h r ee  
configurations studied w e r e  (1) a normal  shock,  ( 2 )  a  tr iple-point  shack,  
and ( 3 )  an  oblique shock with a regu la r  ref lect ion terminat ing i n  a normal  
shock. The  modeled flow fields corresponding to these  t h r ee  shock s t ruc tu r e s  
a r e  shown i n  F igu re  46. 

Normal  shock 

Oblique shock 
separation 

shock separation 

I . 

Figu re  46. Igniter  Flow-Field Models 

In  constructing the analytical  models  i t  was  a s sumed  that the nozzle 
flow field could be  descr ibed  by theoret ical  inviscid  i sen t rop ic  and shock 
re la t ionships .  Fu r the r  assumptions  which w e r e  consis tent  wi th  observed  
nozzle wal l  p r e s s u r e  data  we re :  

F o r  normal  shock-. 

The  igni ter  flow sepa ra t e s  immedia te ly  af ter  the normal  shock and  
flows para l le l  to the nozzle axis .  

F o r  tr iple-point  shock- 

(1 )  T h e  shocks a r e  s t ra ight .  

(2) T h e  s ta t ic  p r e s s u r e  downstream of the second oblique shock i s  
equal  to the s ta t i c  p r e s s u r e  downstream of the normal  shock. 

( 3 )  The flow direct ion downstream of the second oblique shock i s  
pa ra l l e l  to the s t reaml ine  pass ing through the tr iple-point ,  



F o r  oblique shock- 

( 1 )  T h e  shocks a r e  s t ra ight .  

( 2 )  The  oblique shock ref lect ion i s  regu la r .  

( 3 )  The  te rmina l  normal  shock occu r s  at the Mach number of the 
flow immediate ly  downstream of the re f lec ted  shock. 

Two p a r a m e t e r s  w e r e  used  to a s s ign  numerical  values  to each  flow-field 
s t ruc tu r e  study. These  w e r e  the s ta t i c  wa l l -p r e s su re  ra t io  a c r o s s  the sep-  
a ra t ion  point and the igni ter  total p r e s s u r e  l o s s  a c r o s s  the modeled igni ter  
shock s t ruc tu r e  a t  the nozzle axis .  

Resu l t s  of the p a r a m e t r i c  study fo r  the th ree  shock configurations a r e  
plotted i n  F igu re  4 7  a s  a function of the two cha rac t e r i s t i c  p r e s s u r e - r a t i o  
p a r a m e t e r s .  The  locus of s ta tes  for  the normal  shock and tr iple-point  shock 
configura.tions each  r ep re sen t  a unique solution fo r  separa t ion  a t  a given 
nozzle a r e a  ra t io .  Each  curve  for  the oblique shock configuration r e p r e -  
sen t s  solutions a t  a  dist inct  separa t ion  a r e a  ra t io ,  but for varying in i t ia l  
oblique shock turning angles.  These  oblique shock curves  i n  t u rn  define 
two constraining boundar ies .  The  f i r s t  i s  the locus of conditions for  which 
the oblique shock becomes a Mach l ine  a t  the nozzle center  l ine  and beyond 
which the model has no solutions. The  second cor responds  to the l imiting 
conditions a t  which the in i t ia l  oblique shock becomes a s t rong shock. 

Mach wave 

1 . 0  2 . 0  3 . 0  4 . 0  

I g n i t e r  total  p r e s s u r e  r a t i o  - PP1 /P:Z 

F igu re  47. Igniter Flow-Field-Model Operating Cha rac t e r i s t i c s  



The  igni ter  flow models  w e r e  evaluated by comparing experimental.  data 
with the t h r e e  theoret ical  shock configuration solutions.  The exper imental  
points w e r e  chosen for  a low e" posit ion to avoid accounting fo r  the total p r e s -  
s u r e  l o s s  a c r o s s  a ma in  flow bow-shock. At low c'k values the motor -nozz le  
flow ups t r eam of the s lant  a r e a  r e m a i n s  subsonic s o  that wi th  the exception of 

v iscous  l o s s e s  the igni ter  to motor  chamber  p r e s s u r e  r a t i o  should b e  approxi-  
mate ly  equal to the r ec ip roca l  of the igni ter  jet total p r e s s u r e  r ecove ry .  

.I, 

Exper imenta l  points se lected fo r  Model D a t  e"' = 1. 35 a r e  shown i n  Figure 
48 for  continuously decreas ing  P R .  The  igni ter  flow i s  s tab le  for  points 
D01 ,  D02,  and D03,  with point DO3 being the l a s t  condition fo r  which the  
flow i s  ent i re ly  s table .  Po in t s  DN1, DN2, DN3, and DN4 a r e  a sequence 
of points taken a t  the peaks of the igni ter-nozzle  p r e s s u r e  o s c i l l a t i ~ n s ,  based 

upon P118. Conversely ,  points DO4 through DO7 a r e  taken a t  the valleys 
of the osci l la t ions ,  whe re  the flow appears  to r e t u r n  to the  flow mode which 
exis ted before  the oscil lat ions began. 

The  wa l l -p r e s su re  ra t io  v e r s u s  P R  of these  data ,  along with data  from 
Model A, a r e  plotted i n  F i g u r e  49 wi th  the theoret ical  curves  of F igu re  48. 

The  bimodal nature  of the oscil lat ions i s  c l ea r ly  evident. The  behavior 

of the flow leading to and during the oscil lat ions i s  apparent ly  a s  follows: 

( 1 )  Although only one point, D01,  i s  shown on the f igure ,  Curve  I 
i s  the locus  of s t a t e s  during s epa ra t ed  operat ion i n  Mode A at  
high P R .  The  points p r o g r e s s  upward along Curve  I  until they 
r e a c h  Curve  11. 

( 2 )  Upon reaching Curve  11, which apparent ly  i s  the l imi t ing con- 
dition that the oblique separa t ion  shock degenera tes  to a Mach 
wave a t  the center l ine ,  the points then move  to the lef t  along 
Curve  11. 

( 3 )  After pass ing through point D03 ,  the flow jumps to the condi- 
tions r ep re sen t ed  by  point DN1 on Curve  111. 

(4)  As P R  continues to dec rea se ,  the flow a l te rna tes  between Curves  
I1 and 111. 

(5) Curve  111, upon which the lef t -most  point l i e s ,  has  been  drawn 
a s  s epa ra t e  f r o m  Curve  11, and a s  such,  could r ep re sen t  a shift 
to the a l t e rna te  l imiting condition of the mult iple-shock con- 
f iguration,  indicating that the oblique shock i s  s t rong r a t h e r  
than weak.  However,  i t  i s  equally poss ible  that Curve  I1:'is a n  
extension of Curve  11. 





Although the exper imenta l  and theoret ical  loc i  do not coincide exaci:ly, the 
genera l  agreement  i s  another piece of evidence to show that  two different  
flow modes  exis t .  Also,  this  agreement  indicates  that the actual  and modelied 
ign i te r  flow fields a r e  s imi l a r  i n  thei r  essen t ia l  f e a tu r e s ;  i. e . ,  that the Mode 
A flow field cor responds  to a mul t ip le  oblique-normal shock configuration 
and Mode B cor responds  to a normal  shock s t r u c t u r e  o r  var ia t ions  thereof 
( l amda  feet ,  t r ip le  point, e tc ) .  

F igu re  49. Comparison of Exper imental  and Theore t ica l  Loci 



While the data  p resen ted  i n  F i g u r e  49 does not p rove  the exact  con- 
liguratioris of the osci l la tory  igni ter  jet flow f ie lds ,  i t  supports  previous  
conclusions that two dist inct  (Mode A and Mode B )  flow s t ruc tu r e s  exis t  and 
that the onset  of oscil lat ions r e p r e s e n t s  the l imi t ing conditions fo r  which 
an oblique Mode A shock s t rucu tu re  i s  the p r e f e r r e d  s tab le  configuration. 
It  i s  poss ible  that continued s tudies  using the available nozzle p r e s s u r e  data 
might finally l e ad  to some  quantitative agreement  between model  and data. 
However,  this would not necessa r i ly  conf i rm that the model  configuration 
actually conformed to the physical  flow field and that  the agreement  i n  
modeled and physical  r e s u l t s  would extend to solid-propellant  motor  con- 
dit ions.  F o r  these  r ea sons  i t  i s  believed that the osci l la t ion onset  condi- 
tions cannot be  modeled (excepting exper imental  cor re la t ions )  without flow 
visualization s tudies .  

3 .  3 .  4. 3 Motor -Nozzle Flow-Field  Analysis  

Motor-Nozzle P r e s s u r e  Distr ibution 

The motor-nozzle  p r e s s u r e  distr ibution just p r i o r  to the onset  of 
4, 

oscil lat ions depend upon the igni ter  model configuration and e'" location.  
.T, 

F o r  a given configuration a t  low €'I' values,  peak p r e s s u r e s  approximately  
equal  to the throat  p r e s s u r e  occu r r ed  well  fo rward  i n  the nozzle. The  
amplitude of the peak a s  well  a s  the location moved downs t ream a s  the 

.c, 

i gni ter  s-' location was  i nc r ea sed  ( s e e  F igu re  50).  L e s s e r  p r e s s u r e  va r i -  
at ions we re  noted for  different models  a t  equivalent c "  locations a s  shown 
i n  F igu re  51 for  c": = 1. 5. The  decreas ing  peak p r e s s u r e s  co r r e l a t ed  with 
decareasirig values of the igni ter  nozzle l ip  d iamete r .  

A non-dimensional nozzle p r e s s u r e  in tegra l  ( jus t  p r i o r  to the onset  
of osci l la t ions)  taken over  the nozzle sur face  to the in te r  sect ion with the 
slant  a r e a  was  found to be a continuously smooth function of c"  fo r  a given 

.t, 

igni ter  -nozzle configuration. However, the p r e s s u r e  in tegra l  a t  a  given e'" 
location was found to be significantly different fo r  different igni ter  models  
a s  shown i n  F igu re  52. Thus,  i t  appears  that i t  wil l  b e  difficult o r  impos-  
s ib le  to genera l ize  the nozzle wall p r e s s u r e  in tegral .  

Motor-nozzle p r e s s u r e  distr ibutions af ter  the onset  of oscil lat ions 
w e r e  cycl-ical i n  nature.  Oscil lat ions wi th  the l a r g e s t  amplitude appeared  

J, 

to occur  a t  modera te  s'" values (approximately 1. 5) .  Data showing the 
p r e s s u r e  distr ibutions corresponding to maximum,  minimum, and i n t e rme-  
diate peak p r e s s u r e s  a r e  shown i n  F i g u r e  53 fo r  el" values of 1.  35, 1. 50, 
and 1, 80,  respect ively .  
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F igure  50. Motor -Nozzle P r e s s u r e  Data a t  Onset of Oscil lat ions (continued) 
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F igu re  50. Motor-Nozzle P r e s s u r e  Data a t  Onset of Oscil lat ions (concluded) 
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F i g u r e  51. Effect  of Model Configuration on Motor -Nozzle P r e s s u r e  
Distr ibution a t  Onset of Oscil lat ions 



A Model B 

F i g u r e  52. Motor-Nozzle P r e s s u r e  In tegra l  a t  Onset  of Osci l la t ions  

Motor  nozzle  a r e a  r a t i o  - A/A*m 

F i g u r e  53. Motor-Nozzle P r e s s u r e  Dis t r ibut ions  During Osci l la t ions  
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F i g u r e  53. Motor -Nozzle P r e s s u r e  Distr ibutions During 
Oscil lat ions (concluded) 



Motor Flow-Field  S t ruc ture  

Limited studies w e r e  per formed  to investigate essen t ia l  f e a tu r e s  of 
the motor-nozzle  flow f ie ld  needed for  analytical  model  development of 

oscil lat ion onset .  F e a t u r e s  studied w e r e  the mo to r  total p r e s s u r e  l o s s  a t  
the axis  and the slant  a r e a  flow proper t i es .  The  s lant  a r e a  flow p rope r t i e s  
wil l  be d i scussed  under Section 3 .  3 . 4 . 4 ,  Analytical Model s tudies .  

Any sa t i s fac tory  analytical  model  fo r  a given igni ter  geomet ry  and 
location m u s t  r e l a t e  the oscil lat ion onset  conditions to PR .  A neces sa ry  
relat ions.Lp which mus t  exis t  i s  the equality of igniter  and motor  total p r e s -  
s u r e  at opposite s ides  of the s l ip  su r f ace  along the motor  axis.  If P:~ and 
I?' a r e  the igni ter  and motor  total p r e s s u r e s  a t  the s l ip  sur face  along the 

mZ 
axls, then: 

The  equality of the normal ized igni ter-nozzle  p r e s s u r e  distr ibution 
and ign i te r  flow field a t  the onset  of oscil lat ions would imply that P P / P ( ? ~  
i s  constant  and independent of c"' location. If the constant  value of 
P ? / P ~ ~  can  be found for  a given geometry ,  then the solution of an  analyt- 
i c a l  osci l la t ion onset  model would be  reduced to defining the l o s s  i n  motor  
total p r e s s u r e  along the axis  to the s l ip-surface  stagnation point. 

0 0 The  constant  igni ter  total p r e s s u r e  l o s s  ra t io ,  Pi /PiZ,  can b e  approxi-  
ma ted  b y  examination of exper imental  data a t  low E':' va lues .  If the motor  
nozzle i s  blocked, then the motor  flow i s  subsonic and except fo r  viscous 

0 l o s s e s ,  PO m = pk2 and P;/P& = P!/P~~. 

The motor  total p r e s s u r e  l o s s  along the axis  can  then be  approxi-  
.t, 

mated  a s  a function of E'" by: 

(I) Assuming that the ign i te r  flow-field dis tance to the s l ip  sur face  
i s  independent of s': and that viscous motor-nozzle  viscous 
total p r e s s u r e  l o s s e s  a r e  negligible. 

( 2 )  Determining this constant  axial- igniter  je t -s l ip-surface  
dis tance and bow- shock standoff distance.  

.?, 

( 3 )  Assuming that, a t  each s"  location, the motor  total p r e s s u r e  
l o s s  i s  equal to the bow-shock l o s s .  The bow-shock l o s s  i s  cal- 
culated af ter  determining the shock axia l  posit ion and center l ine  
Mach number f r o m  the known shock standoff distance.  

This method of determining the motor  total p r e s s u r e  l o s s  was  evalu- 
a ted by  utilizing exper imental  data to calcula te  igni ter  total p r e s s u r e  l o s s  



and the bow-shock standoff distance.  The  resul t ing determinat ion of 
igni ter  to motor  chamber  p r e s s u r e  r a t i o  a t  the onset  of oscil lat ions fo r  
Model A i s  shown in  F igu re  54. Good agreement  with the exper imental  data 

i s  obse rved  f o r  low c'i' values with increas ing  divergence of r e su l t s  for  
.I, 

i nc reas ing  cq.. P a r t  of the d i sagreement  a t  high c "  values resu l ted  f r o m  
the simplifying assumption that a bow-shock standoff d is tance r ema ins  
constant  a s  the igni ter  i s  withdrawn. I n  r ea l i t y  the bow-shock standoff 

d is tance would d e c r e a s e  with increas ing  c': and the subsequent motor  total. 
p r e s s u r e  l o s s e s  taken a t  a higher Mach number would a l so  i n c r e a s e .  T h e r e -  

f o r e ,  if the movement of the bow-shock location w e r e  accounted f o r ,  the  
agreement  between exper imental  and modeled r e su l t s  would be  improved.  
In  the absence  of knowledge of the contact su r face  shape,  i t  was  imposs ib le  
to calcula te  the bow-shock standoff d is tance a s  a function of Mach number .  

0 onset of oscillation 
data points, Model A 

Figu re  54. P R  Calculated by Bow-Shock To ta l -P r  es  s u r  e-Los s  App~*oximation 

T h e s e  r e su l t s  suggest  that the foregoing m a y  be a useful  method for 
modeling the onset  of oscil lat ions.  However,  e i ther  a n  exper imental  corr e-  
la t ion o r  a n  analytical  method i s  needed to es tab l i sh  the igni ter  total p r e s -  
s u r e  l o s s  and the  constant  s l ip - sur face  standoff d is tance.  (Exper imental  
data  exis t  for  calculat ing the bow-shock standoff d is tance a s  a function of 
apparent  s  t r  e a m  Mach No. ) Prev ious  sect ions  indicated poss ible  methods 
for  determining the igni ter  total p r e s s u r e  l o s s .  T i m e  l imi ta t ions  prevented 
determinat ion of a sa t i s fac tory  method of calculating the s l ip - sur face  standoff 



dis tance.  It i s  believed that the u s e  of emp i r i ca l  cor re la t ions  would b e  the 
ea s i e s t  solution to this problem.  

3. 3 .  4. 4 Analytical Model 

The approach taken i n  at tempting to develop a sa t i s fac tory  analytical  
model was  s imi l a r  to that u sed  fo r  the blockage models .  A control  volume 
contained within the igni ter  and motor  nozzles was  es tabl ished and solutions 
of the m a s s  and momentum conservat ion equations w e r e  sought i n  t e r m s  of 
modeled boundary conditions. 

The  modeling study did not provide r e su l t s  which could b e  used to 
quantitatively determine motor  and igni ter  conditions which r e s u l t  i n  un- 
s table  operation.  This fa i lu re  resu l ted  p r i m a r i l y  f r o m  a n  inabil i ty to model  
the flow field a t  the s l an t - a r ea  boundary. While not completely successful ,  
the model  studies did provide considerable  insight  into the flow-field s t ruc -  
t u r e  and indicated data which m u s t  b e  obtained to develop a successful  model.  

Analysis  of igni ter  and motor  nozzle flow-field s tudies  indicated a 
probable flow-field s t ruc tu r e  s imi l a r  to that shown i n  F i g u r e  55. A control  
volume with boundaries which incorpora te  bas ic  flow-field f ea tu r e s  i s  shown 
i n  Figure 56. I n  writ ing general ized m a s s  and momentum equations for  the 
control  volume, i t  was  a s sumed  that the flow at  boundaries can be  descr ibed  
b y  perfect  gas  i sen t rop ic  re la t ionships .  This  does not preclude shock o r  
viscous in teract ions  within the control  volume. It was  a l so  a s sumed  that 
heat t r ans f e r  a t  the boundaries i s  negligible, that the motor  and igni ter  total 
t empe ra tu r e s  w e r e  equal, and that both igni ter  and motor  had identical  p e r -  
fect  gas  p roper t i es .  All equations w e r e  wr i t t en  i n  non-dimensional f o r m  by  

using the non-dimensional p a r a m e t e r s  which cha rac t e r i ze  motor  and ign i te r  
design a r ~ d  flow conditions. 

F i g u r e  55. Flow-Field  S t ruc ture  a t  Onset of Oscil lat ions 



F i g u r e  56. Control  Volume a t  Onset  of Oscil lat ions 

Conservat ion of momentum requ i r e s  sa t is fact ion of the non-dirnens~onal- 
momentum equation: 

By sui table  express ion  of the momentum t e r m s  a t  each  of the boundar ies ,  i e  ee 
by  u s e  of empi r ica l  cor re la t ions  and by the application of m a s s  conservat ion 
i n  the t e r m  for  F the equation Fx was  reduced to a n  equation i n  two un- 

3x' 
known var iab les  MS1 and P R .  Thus to obtain a solution fo r  Fx = 0, an 
empi r i ca l  cor re la t ion  o r  model  of the f o r m  Msl = h (c"', P R )  was  r equ i r ed  
to reduce  the number of var iab les .  In  a n  a t tempt  to find an  empi r ica l  c o r -  
re la t ion  f o r  the average  s l an t - a r ea  Mach number ,  exper imental  values  for 
a l l  unknowns w e r e  input into the mass -momen tum equation. Also F'3x was  
solved a s  a function of Msl for  p a r a m e t r i c  values of P R  and A&/A: ( s e e  
F igu re  57) .  It  was  found that the min imum calculated value of F3, was 
g r e a t e r  than the a lgebraic  s u m  of the other t e r m s  der ived using exper i -  
menta l  values,  i. e. , 

A sys temat ic  rev iew of a l l  assumptions  u sed  i n  deriving the model and 
a n  analysis  of the effects of mode ra t e  var ia t ion i n  the exper imental  e r r o r  
was  made.  On the ba s i s  of this review,  i t  was  concluded that  the assumption 
that the flow out of the control  volume was  normal  to the s lant  a r e a  was the 
only fac tor  which could produce the r equ i r ed  discrepancy i n  r e su l t s .  The 
direct ion of the e r r o r  indicated that the actual  ave rage  flow angle a t  the 
s lant  a r e a  was  g r e a t e r  than the nozzle half angle.  Th is  factor  i n  e s sence  
added another  unknown which mus t  be  modeled o r  exper imental ly  determined 



to define the slant  a r e a  Mach number a s  a function of sx' and P R .  .Fu r the r  
p a r a m e t r i c  - studies of s l an t - a r ea  flow models  could poss ibly  b e  made  to 
defice MSI, but the postulated flow model  would have to b e  ver i f ied  by  con- 
Eirmatioc with visualization s tudies  of the s lant  a r e a .  Some empi r ica l  c o r -  

re la t ion  which would adequately model  the onset  of oscil lat ions could poss ibly  
b e  obtained with the t es t  r e su l t s  available if t ime  permit ted.  

F i g u r e  57. P a r a m e t r i c  Solution of Oscil lat ion Onset  Model 

3 ,  3.4. 5 Oscil lat ion Control  Techniques 

T e s t s  w e r e  conducted to survey  poss ible  oscil lat ion control  techniques.  
Compar i son  of data  f r o m  these  t es t s  indicated that of the modified nozzles 
the only bechnique which sa t is factor i ly  reduced the oscil lat ions was  the 
s tepped-nozzle configurations. T e s t s  with conventional nozzles,  but wi th  
rapid terminat ion o r  decay of igni ter  chamber  p r e s s u r e ,  demons t ra ted  that 
oscil lat ions could a l so  be  avoided o'r reduced i n  magnitude by  that method.  

The genera l  oscil lat ion cha rac t e r i s t i c  of the stepped nozzles was  s i m -  
ilar to that of the unmodified nozzles.  However,  the cha rac t e r i s  tic mapping 
regions  w e r e  modified and amplitudes of the unstable ign i te r  and motor  
nozzle oscil lat ions w e r e  p rogress ive ly  reduced with increas ing  s tep  s i ze .  
F igu re  58a p r e sen t s  mapping data  for  nozzle AS1 and compara t ive  mapping 
curves  for  Model A. Although a s imi la r i ty  i n  mapping regions  ex i s t s ,  the 



des i r ab l e  unblocked s table  region i s  reduced for  Model AS1. Mapping data  
fo r  Models AS2, AS3, A, and C a r e  p resen ted  i n  F i g u r e  58b. This  mapping 
indicated that the unblocked s table  region i s  expanded for Models AS2 and 
AS3. The  in i t ia l  unblocking comes  a t  higher p r e s s u r e  r a t i o s  and the onset  
of oscil lat ions a t  lower  p r e s s u r e  ra t ios .  It i s  ins t ruc t ive  to note that the 
oscil lat ion onset  p r e s s u r e  ra t ios  fo r  stepped nozzles AS2 and AS3 a r e  reduced 
to values  obtained for igni ter  Model C.  T h e  nozzle a r e a  r a t i o  on Model C was 
5 . 0  a s  compared  to an  a r e a  r a t i o  a t  s t ep  of 2 .27 .  This i s  consis tent  with an 
analysis  of data f r o m  the other  models .  I t  was  observed  that fo r  a given E"' 
location the onset  of oscil lat ion occu r r ed  a t  inc reas ing ly  lower  p r e s s u r e  
r a t i o s  for  decreas ing  igni ter-nozzle  expansion r a t i o s .  In the c a s e  of  the 
stepped nozzle,  the  effective back p r e s s u r e  i s  pe rmi t ted  to feed back into 
the s tep  cavity, allowing the nozzle to opera te  a s  if the s tep  expansion r a t i o  
was  the nozzle expansion ra t io .  This  lowering of effective expansion ra t io  
allows the nozzle to ope ra t e  s tably  a t  higher back p r e s s u r e s .  

0 
1'.0 1 . 2  1 . 4  1 . 6  1 . 8  2 . 0  2 . 2  
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a) Model AS1 

osci l lat ions 
F i n a l  unblocking 

F i g u r e  58. Operating Maps f o r  Stepped Nozzles 
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b) Models AS2 and AS3 

Figu re  58. Operating Maps for .Stepped Nozzles (concluded) 

The  s tep  nozzle,  pa r t i cu la r ly  AS3, .s ignificantly reduced  the ampl i tude 
of the unstable  and motor  osci l la t ions .  F i g u r e  22 shows data  f r o m  nozzle 
AS3 f o r  c':' = 1. 5. As  indicated,  the p r e s s u r e  osci l la t ions  a r e  m u c h  l e s s  
s e v e r e  than comparab le  osci l la t ions  fo r  Model A shown i n  F i g u r e  20. 

iModels AB1 and AB2 did not appreciably  modify the osci l la t ion 
characte : r is t ics  o r  mapping region re la t ionships .  F o r  some  t e s t s ,  the 
r n i n ~ r  motor -nozz le  p r e s s u r e  dis turbances  noted p r i o r  to the onset  of 
osci?lat ions w e r e  enhanced. However,  i n  the ma jo r i t y  of t e s t s  with Models 
AB I. and AB2, t he r e  did not appear  'to b e  any notable d i f ferences  i n  osc i l -  
l a t o r y  behavior a s  compared  wi th  that fo r  nozzle A. 

A mapping of t e s t s  f o r  Models AB1 and AB2 ( s e e  F i g u r e  59) indicated 
results which w e r e  a lmos t  ident ica l  wi th  those of Model A, except f o r  
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delayed in i t ia l  unblocking points a t  e'? = 1. 50 and 1 .65.  T h e s e  changes 
apparent ly  r e su l t ed  f r o m  modified nozzle- shock configurations due to induced 
boundary l aye r  separat ion.  
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F i g u r e  59. Operating Maps fo r  Pe r fo ra t ed  Nozzles 

a00 0 Model AB1, bleed 
* Model AB1, p r e s su r i z a t i on  

A@ o Model AB2, bleed 

3.  3 .  5 Misalignment 

T e s t s  with only angular o r  l a t e r a l  misal ignment  displayed cha rac t e r  - 
i s t i c  oscil lat ions which w e r e  quite s imi l a r  to those observed  for  cornparable 
al igned tes t s .  T e s t s  with combined angular and l a t e r a l  misa1ignmen.t d i s -  
played l e s s  stabil i ty and a tendency toward a s y m m e t r i c  mo to r -  and i .gniter-  
nozzle flow behavior.  This  behavior was  noted for  both  combined misalign- 
ment  configurations which did not display any quali tat ively d i s s imi l a r  
differentiating cha rac t e r i s t i c s .  

.I, 

Data fo r  a l a t e r a l  plus angular misal ignment  configuration a t  c"' = 1. 35 
i s  shown i n  F i g u r e  23. At high blocked p r e s s u r e  r a t i o s ,  with a full-flowing 
igni ter  nozzle, a stepped behavior of the mo to r  nozzle p r e s s u r e  t r ace s  was 
observed.  This  i s  cha rac t e r i s t i c  of a l a t e r a l  switching of the igni ter  jet,  



After the onset  of oscil lat ions the igni ter-nozzle  p r e s su re -phase  re la t ion-  
ship indicated modera te ly  m o r e  a s y m m e t r i c  flow separa t ion  than the aligned 
tees ts ,  Combined misal ignment  t e s t s  a t  higher e" locations displayed tend- 
ency toward a symmet r i ca l  ign i te r  flow separa t ion  wi th  increas ing  €": values .  

Misalignment did not change the mapping cha rac t e r i s t i c s  of the ign i te r  
nozzles tested.  F igu re s  60 and 61 p r e sen t  misal igned mapping data for 
igni ter  nozzles A and B. 

A@a Lateral misalignment 
hm a Angular misalignment 
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Figu re  60. Operating Map for  Model A Misaligned 
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Figu re  61. Operating Map f o r  Model B Misaligned 

Interpreta t ion of the phase  re la t ionships  of p r e s s u r e  measureiments 
on opposite s ides  of the nozzles permi t ted  a qualitative charac te r iza t ion  of 
motor -nozz le  a symmet r i c  behavior.  However, i t  was difficult to de te rmine  
the distr ibutional  motor  -nozzle a symmet ry  because  only two m e a s u r  ernents 
e ach  w e r e  made  i n  the quadrants  o ther  than the principal  plane of m e a s u r e -  
ment .  All of the nozzle p r e s s u r e  taps i n  the pr incipal  quadrant w e r e  i n s t r u -  
mented  along with P Z l O ,  P310,  P410, P312, and P412. In  r e t ro spec t  i t  
would have been  m o r e  des i rab le  to ins t rument  a l l  of the p r e s s u r e  taps along 
two opposed quadrants to define two complete p r e s s u r e  prof i les .  Definition 
of the p r e s s u r e  distr ibution i n  the fully ins t rumented  quadrant was  possible,  
but const ruct ion of a p r e s s u r e  profi le wi th  the two p r e s s u r e  taps i n  any other 



quadrant requi red  considerable  subjective in te rpre ta t ion  and a s  such is open 
to question. 

La t e r a l ,  angular plus l a t e r a l ,  and angular minus l a t e r a l  misal ignment  
data  a r e  p resen ted  i n  F igu re  62 for  € *  values of 1. 50 - 1. 51. These  data 
indicate  approximately the s a m e  imbalance  of p r e s s u r e  distr ibution regard- 
l e s s  of misal ignment  configuration. The  deviation f r o m  the a l igned  p r e g s u r e  
distr ibution was  not significant. Similar  conclusions can  be  made  about the 
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aligned and misal igned data  p resen ted  i n  F igu re  63 f o r  cq' = 1. 9 7  - 2.00, 

3 . 4  DESIGN CRITERIA 

The p r i m a r y  purpose of this p r o g r a m  was to develop design c r i t e r i a  
applicable to the aft-end ignition of 260 inch  (6. 6 rn) type of solid-propellant  
rocke t .motors .  In t h s  subsection the r e su l t s  of this p r o g r a m  and the  p r e -  
vious p rog ram,  and the conclusions drawn there f rom,  will  be presented 
m o r e  i n  a genera l  design philosophy to be  used  a s  guidelines i n  the design 
of a system.  Although considerable  experimental  data have been genera ted  
i n  these  p rog rams ,  comparable  analyses  have been developed sufficiently to 
justify confidence i n  extrapolations to a l a r g e  sys tem.  While i t  i s  believed 
that  a l a r g e  sys t em wil l  behave i n  the s a m e  genera l  fashion a s  the t e s t  sy s -  
tems,  the co r r ec tnes s  of c r i t i ca l  p a r a m e t r i c  values f o r  which ce r t a in  
behavior occu r s  i s  open to question. 

Nozzle 
Teet Quad. C* PR Configuration - - - -  

0 8 7  100 1 . 5 1  4 .47  Lat . 
A 87 300 1 . 5 1  4 . 4 7  Lat. 

0 87 100 1 . 5 0  4 . 5 2  Aligned 

I I I 

1 .0  2 . 0  3.0 4 . 0  
Motor nozzle area ratio - A / A ~  

a .  Lateral 

F i g u r e  62. Misalignment Motor-Nozzle P r e s s u r e  Distribution 
.I. 

e" = 1. 50, 1. 51 



Model A 

Nozzle 
Teat  Quad. E *  PR Configuration - - - -  

0 1 .50  5.26 Ang.+ Lat. 
300 1 .50  5 .26 A n g . + L a t .  A l o o  

a 95 100 1 .50  4 .52  Ang.+ Lat .  

0 95 300 1 .50  4 . 5 2  A n g . + L a t .  

2 .0  3 . 0  4 . 0  
Motor nozzle a r e a  ra t io  - AIA; 

b) Angular + l a t e ra l  

Model A 

Nozzle 
Test Quad. 2 PR configurat ion - - - -  

0 102 100 1.51 5.13 Ang. -Lat .  
A 102 300 1 .51  5 .13 Ang.-Lat .  

I02  100 1 .51  2.76 Ang,  -Lat. 
0 102 300 1 . 5 1  2.76 Ang.-Lat .  

2.0 3.0 4 . 0  
Motor nozzle area ra t io  - A/A& 

F i g u r e  62. Misalignment Motor-Nozzle P r e s s u r e  Distr ibution 
.I. 

sq' = 1. 50, 1. 51 (concluded) 



Model A 
Nozzle 

Tes t  Quad. C *  P R  Configuration ---- 
0 99 100 1.97 6 .06  Ang. -Lot. 
A 99 300 1 . 9 7 6 . 0 6  Ang . - b t  . 
0 66 100 2.00 6 . 1 4  Aligned 

2 .0  3 .0  4 . 0  

Motor nozzle a r e a  ra t io  - A/A% 

a. High c* and PR 

Model A 

Nozzle 
Tes t  Quad. 6'' PR Configuration 

0 98 100 1.97 3.35 Ang. -Lat.. 
A 98 300 1;97 3 . 3 5  Ang. -Lat .  

0 96 100 1.97 3 . 2  Ang. t L a t .  
0 96 300 1 .97  3 . 2  Ang. t L a t .  

b .  High 8% and low P R  

F igu re  63. Misalignment Nozzle P r e s s u r e  Distr ibutions 



The analytical  tools which have been  u sed  to c o r r e l a t e  data  and provide 
insight into the flow s t ruc tu r e s  involved have a l l  been based  upon inviscid ,  
pe r fec t  gas  models .  The  g r e a t e s t  uncer ta inty  i n  the in te rpre ta t ion  and 
d i r ec t  application of the data of these  two p r o g r a m s  to other  sy s  terns i s  
believed to l i e  i n  the unknown effect of the two-phase nature  of a meta l l i zed  
propellant  exhaust upon the gas  p roper  t ies  of the s  t r  e a m s  and especia l ly  
upon the i r  v iscous  in teract ion.  I t  i s  possible that a l a r g e  propor t ion of 
par t i cu la tes  i n  the s t r e a m s  could have a profound effect upon the in te rac t ion  
of two opposed s t r e a m s ,  each  of which exper iences  s e v e r e  momentum 
changes during such  interact ion.  Th is  i s  believed to be  the predominant 
c ause  f o r  the displacement  of the hot-firing operating m a p  f r o m  those  of tlie 
a i r  t e s t s .  I t  i s  believed that the condensed phase  effects wil l  d iminish for  
l a r g e r  sy s t ems .  

In sp i te  of these  l imi ta t ions ,  the ins ights  into the behavior of af t -end 
ignition sy s t ems  gained during these  two p rog rams  make  i t  poss ible  to 
define the c r i t i ca l  fea tu res  of a sa t i s fac tory  design along with a favored 
approach  to that design. 

An idea l  s y s t e m  for  a l a r g e r  conventional booster  i s  one i n  which the 
igni ter  i s  i n  action just: long enough to achieve the de s i r ed  ignition of the 
ma in  propel lant  g r a in  and p r e s s u r e  r i s e  of the motor  chamber ,  and then i s  
t e rmina ted  instantaneously to avoid reblocking and operat ion i n  the osc i l -  
la t ion region.  These  l a t t e r  requ i rements  a r e  difficult to achieve; although 
with  specia l  techniques, terminat ion m a y  be  sufficiently rap id  so  tha.t dwell 
t imes  i n  the osci l la t ion region m a y  be sho r t  enough to prevent  osci l la t ion 
development. However,  this re l i ance  upon complex s y s t e m s  and sophi s ti - 
cated techniques de t rac t s  f r o m  one of the ma in  v i r tues  of aft-end ignition, 
namely,  i t s  s impl ic i ty  and re l iabi l i ty .  A m o r e  favorable  approach  i s  to 
des ign f r o m  the standpoint that  s tandard,  re l i ab le ,  s ta te-of- the-ar t  tech- 
niques should b e  employed, especia l ly  i n  the design of the igni ter  propellant  
gra in .  The  sys t em can then be designed to accommodate these  s tandard  
prac t ices  and operation,  producing s a f e r ,  predic table  ignition and post -  
ignition behavior . 

3 .4 .  1 Sat is factory Ignition 

F o r  the purpose of this r epo r t ,  a  s y s t e m  which produces  the faistest 
poss ible  ignition over  the en t i re  sur face  of the propellant  g r a in  i s  con- 
s i de r ed  to b e  the l l s a t i s f ac to ry l l  sy s t em.  T h e r e  a r e  many  r ea sons  why this 
m a y  not b e  acceptable i n  a v e r y  l a r g e  booster  (e.  g . ,  too rap id  chamber  pres- 
s u r e  r i s e ,  mo to r - ca se  expansion, and severe ly  t rans ien t  loading of the g r a in  
and /o r  upper s tage  s t ruc tu r e s ) .  There fore ,  i t  i s  the responsibi l i ty  of the 
designer  of a par t i cu la r  motor  to es tabl ish  the ignit ion requ i rements  of his  
s y s t e m  and e i ther  design to the max imum o r  reduce  the capabil i ty of the 
igni ter  accordingly.  



As was  discovered i n  the previous  p r o g r a m ,  the f a s t e s t  ignition and 
chamber  filling was  achieved when full penetra t ion of the motor  cavity by 
the igni ter  was  accomplished.  This  provides fo r  the g r ea t e s t  heat  t r ans f e r  
over  the en t i re  g r a in  sur face ,  and i s  especia l ly  impor tan t  i n  the head-end 
s t a r  region,  whe re  approximately  60 percen t  of the g r a in  su r f ace  was  con- 
tained i n  the fo rward  20 percen t  of the motor  length. 

Maximum penetra t ion i s  produced by  a combination of two f ac to r s :  
F i r se ,  the jet mus t  have maximum re s i s t ance  to viscous e ros ion  and d i s -  
sipation of i t s  axial  momentum. This  i s  obtained Gi th  a cohesive jet having 
the highest poss ible  total p r e s s u r e  and jet velocity. Second, be'cause the 
purpose  o l  the jet i s  to pene t ra te  through the a i r  cushion i n  the cavity, i t  
should have a low cross -sec t iona l  a r e a  and wholly axia l  flow. This  l a t t e r  
p roper ty  a l so  reduces  the tendency fo r  shock-wave dissipation of the jet 
momentum caused by repet i t ive  changes i n  c ross - sec t iona l  a r e a  such  a s  
occur  with a highly underexpanded sonic jet. 

A jet having these  cha rac t e r i s t i c s  i s  produced by  an igni ter  having a 
high chamber  p r e s s u r e  and expansion to near  ambient p r e s s u r e  i n  a nozzle 
of mode ra t e  divergence angle. Obviously, the l lgoodness l l  of the igni ter  
wil l  be  l imi ted  by  prac t ica l  considerat ions .  The  max imum possible  s  tate-of- 
the -a r t  chamber  p r e s s u r e  wil l  depend on many fac tors ,  especia l ly  s i ze  of 
the s y s t e m  and type of propellant  used  i n  the igni ter .  Also,  a s  will be dis-  
cussed  i n  detai l  i n  the next subsection,  c a r e  mus t  be  taken to ensu re  that 
the ign i te r  chamber  p r e s s u r e  se lected fo r  be s t  ignition will  not provide un- 
de s i r ab l e  conditions i n  the post-ignition period, if that igni ter  p r e s s u r e  i s  
heid constant  over  the en t i re  in terval .  

Se'lection of the s i ze  and flow r a t e  of the ign i te r  i s  a m a t t e r  of de te r -  
mining the l a r g e s t  s i z e  igni ter  jet which will ini t ial ly penetra te  through the 
motor throat  without s eve re ly  res t r i c t ing  the r e t u r n  flow through the annular 
a r e a .  I n  the event the r e t u r n  flow i s  r e s t r i c t ed ,  the jet expands, present ing 
a l a r g e  f ronta l  a r e a  to the cavity dead a i r ,  and ac t s  a s  a piston to compres s  
that  ambient cold a i r  into a zone i n  the head end of mo to r .  Th is  effectively 
i so la tes  that port ion of the g r a in  f r o m  the jet, resul t ing i n  slow sur face  
beatup and f l ame  spread .  

Fdluch has  been sa id  about the maximum igni ter  f low-rate pa r ame te r  
(&/A"' j ( s e e  Reference 1 fo r  a review of pas t  work)  above which the igni ter  

rn 
jee ac t s  a s  a piston and does not produce improved ignition. This  value has 
been repor ted  to be approximately 0. 3 l bml sec - in2  (210. 9 kg / s ec -m2) .  It 
i s  impor tan t  to note that this l imi t  was  observed i n  ign i te r s  which w e r e  not 
designed to produce a low cross -sec t ion ,  high-momentum jet without pluming 
o r  billowing. No such l imi t  was  encountered i n  the previous p rog ram,  even 
though maximum m a s s  flow pa rame te r  values of 0. 572 l bmlsec - in2  (402.2 

2 k g / s e c - m  ) w e r e  tested.  Thus,  i t  i s  postulated that the c r i t i ca l  p a r a m e t e r  
i n  sizing the igni ter  to avoid piston-l ike behavior i s  the d iamete r  of the 
igni ter  jet a t  the motor  throat ,  even though no significant body of knowledge 



has been compiled to support  this  contention. If the igni ter  i s  designed f o r  
near-opt imum expansion to produce a jet of constant  d i ame te r ,  then the 
threshold igni ter  s i z e  above which the igni ter  p e r f o r m s  poor ly  can  b e  
descr ibed  i n  t e r m s  of the s i z e  of the jet exit with r e spec t  to the motor  
throat .  Although no l imiting functional re la t ionships  have been es tabl ished 
i n  the c u r r e n t  p rog ram,  a maximum value of the ign i te r  exit diametler to 
motor  throat  d iamete r  of 0 .  55 was  t es ted  i n  the previous p r o g r a m  and found 
to be  ent i re ly  sa t is factory.  Hence i t  i s  recommended that this value b e  taken 
a s  the max imum to b e  used  fo r  design purposes  until other data  to the con- 
t r a r y  a r e  generated.  

T h e r e  i s  a l so  a lower  l imi t  of the igni ter  mass - f l ux  pa rame te r  below 
which ignition will  not occur  o r  below which the ignition delay will be exces- 
sive.  Th is  lower  l imi t  will depend upon ignition t ime  requ i rements  and can- 
not be  es tabl ished a p r io r i  f o r  a l l  c a se s .  

P lacement  of the ign i te r  over  a mode ra t e  range  of c": values from I.. 2 
to 2 .  0 does not cause  appreciable  changes i n  the igni ter  jet penetra t ions ,  
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propellant  g r a in  heating, o r  f i r  s t  ignition. However,  low c"' values do reduce  
the t ime  to r e a c h  r a t ed  chamber  p r e s s u r e  because  of g r ea t e r  in i t ia l  motor  
nozzle throat  blockage and corresponding higher p ressur iza t ion  r a t e s .  If 
f a s t  chamber  filling i s  de s i r ed ,  the igni ter  should be placed a t  lowest  e'" 
position consis  tent with pos t-ignition blockage and oscil lat ion cons t ra in t s ,  

Summary  

Following a r e  the few key ru l e s  which m u s t  b e  followed to design for. 
be s t  penetra t ion and ignition of a l a r g e  L I D  motor :  

( 1 )  Highest possible igniter  chamber  p r e s s u r e  consis  tent wi th  r e -  
l iable  s ta te-of- the-ar t  p rac t ice  and with post-ignit ion r equ i r e -  
ments .  

( 2 )  Rat io  between igni ter-exi t  and motor - th roa t  d i ame te r s  no 
g r e a t e r  than 0. 55. 

( 3 )  Near  opt imum expansion of the ign i te r  flow 

( O m  < PielPambient < 2 .0)  

.L 

(4) The  igni ter  c"' should be  a s  low a s  poss ible  consis tent  with 
s a f e  operat ion i n  the post-ignition period.  

3. 4. 2 P o s t  Ignition-Unblocking and Oscil lat ions 

Safe  operat ion during the post-ignition per iod normal ly  r e q u i r e s  that 
reblocking b e  avoided af ter  the motor  has  reached  design chamber  p r e s s u r e .  
Neither should s e v e r e  motor  nozzle p r e s s u r e  oscil lat ions be  allowed to occur. 
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Reblocking can be  avoided ent i re ly  by placing the igni ter  a t  an  s-'  grea t e r  
.T, 

than the E:'" a t  which the f inal  unblocking and onset  of osci l la t ion l i ne s  i n t e r -  
sect, This  condition i s  shown i n  F i g u r e  64. Thus ,  even i f  the ign i te r  fa i ls  
to pe r fo rm proper ly  during the lift-off o r  separa t ion  of ign i te r  and mo to r ,  
the moto:r throat  wil l  not reblock i n  Mode B. 

F igu re  64. Locus of Sta tes  fo r  Safe Operation and Withdrawal 

The  oscil lat ions between Mode A and Mode B flow s t ruc tu r e  can  be  
avoided by operating a t  P R  values above the onset  of osci l la t ion l ines .  Also,  
the u s e  of a slotted o r  stepped igni ter  nozzle significantly reduces  both the 
amplitude of the oscil lat ions and the span of p r e s s u r e  r a t i o s  over  which they 
exis t .  Both means  a r e  recommended for  mos t  re l i ab le  control .  It i s  doubtful 
that terminat ion of the igni ter  action can be  sufficiently f a s t  and posit ive to 
ensu re  that no oscil lat ions wil l  occur ,  although i t  m a y  prove to be des i rab le  
in s o m e  ins tances ,  i n  combination with the slotted nozzle. 

P r o p e r  tai loring of the igni ter  g r a in  design can  produce a wide range 
of p r e s s u r e -  t ime  curves .  Selection of the be s t  igni ter  action should depend, 
to a l a r g e  degree ,  on the confidence of the designer  i n  designing a re l i ab le ,  
reproducible  schedule of igni ter  chamber  p r e s s u r e  and flow. 
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The mos t  favorable ign i te r  action is one which produces  the PR-c'" 
withdracval locus  labeled A i n  F igu re  64. Th is  provides a comfor table  



m a r g i n  of safety with r e spec t  to the onset  of osci l la t ions ,  while a l so  reduc-  
ing the in terfer ing effects on the m a i n  flow of the ign i te r  flow, and the p r e s -  
s u r e  in tegra l  on the nozzle wall  caused  by the shock wave impingment ,  
Reduction of the shock wave p r e s s u r e  on the nozzle i s  m o s t  impor tan t  a t  
the ins tant  the shock wave in te r sec t ion  with the nozzle wall  p a s s e s  the exit 
a t  some  point around the per iphery  of the exit.  Because  the motor  and 
igni ter  m a y  no longer b e  perfect ly  aligned, and because  of sl ight  a symmet ry  
of the bow-shock, a substant ia l  nozzle s ide  f o r c e  m a y  exis t  momenltarily, 
unti l  the shock impingment has  cea sed  a l together .  Successful  u s e  of this  
technique r e q u i r e s  a p r e c i s e  m a t c h  of the igni ter  ac t ion and motor  lift-off, 
and m a y  be  difficult to achieve. The  designer  wil l  have to t r ade  the reduc-  
tion of a symmet r i c  nozzle loads  with p r e c i s e  tai loring (Curve A)  against  the 
the overa l l  i nc r ea sed  re l iabi l i ty  with the approach  resul t ing i n  Curve  B. The  
l a t t e r  ensu re s  that neither reblocking ( in  ei ther Mode A o r  Mode B )  nor 
oscil lat ions will occur .  

3 . 4 .  3 Example  P r o b l e m  

The  following example i s  included to i l l u s t r a t e  a way i n  which the cr i t i ca l  
aft-end igni ter  design p a r a m e t e r s  m a y  be  se lected.  The  sample  sy s t em i s  
descr ibed  a s  follows: 

(1) Motor des ign p r e s s u r e  - 500 ps i  (3 .475 M N / ~ ~ )  

(2 )  Motor- and igni ter  -propellant  exhaus t -gas  p roper  t ies  s im i l a r  
to those of previous hot f i r ings ,  

Total  temp. = 5980°R (3320°K) 

( 3 )  Igniter  chamber  p r e s s u r e  i s  constant af ter  ini t ial  r i s e .  

(4 )  Sys tem operating map  i s  identical  to that f o r  hot f i r ing f r o m  
previous  p r o g r a m  (F igure  65).  

(5 )  Unres t ra ined  launch vehicle; thrust lweight  (T /W)  a t  lift-off = 1 , 4  

F r o m  F i g u r e  65, values of 1. 8 and 5. 5 fo r  s": and P R  a r e  se lec ted  a s  being 
satisfac ' tory for  safe  post-ignition operation.  Then 

P: = 500. 5. 5 = 2750 ps i a  (18.960 M N / ~ ~ )  



Pei 2. 0 a t m  (0.202 M N / ~ ~ )  

then 

This  wil l  provide good penetra t ion into the motor  cavity (approximately  9 
igni ter  -nozzle d i ame te r s ,  according to the data  of Refe rence  1) .  Refe r r ing  
to the locus  of s ta tes  of F i g u r e  65, i t  c an  b e  s e e n  that the motor  throat  wil l  
in i t ia l ly  unblock a t  a P R  of 8. 9, o r  motor  chamber  p r e s s u r e  of 309 p s i a  
(2. 13 M N / ~ ~ ) ,  62 percen t  of design chamber  p r e s s u r e .  F o r  a design 
launch T/ W of 1 .4 ,  assuming that th rus t  i s  propor t ional  to chamber  p r e s -  
s u r e ,  the vehicle begins to lift  a t  a chamber  p r e s s u r e  of 357 p s i a  (2 .461 
M N / ~ ~ )  o r  a t  a P R  of 7. 7. Because  of the i nc r ea sed  nozzle p r e s s u r e  p r o -  
duced by the ign i te r ,  th rus t  wil l  probably be  higher,  and lift-off slightly 
sooner.  Depending upon the chamber  p r e s s u r e  r i s e  and vehicle accelera t ion,  
the locus  will  b e  genera l ly  a s  shown, with P R  decreas ing  to i t s  steady-state 
value  of 5. 5 a s  s'l' i n c r e a s e s  due to lift-off. 

+ 

- 
- 

- 
- 

Design chamber pressure - 
- 
- 
- 
- 
- 
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F i g u r e  65. Example  P r o b l e m  fo r  Post-Ignition Operation 



F o r  mo to r s  having high chamber  p r e s s u r e ,  e .  g .  1000 p s i a  (6, 895  
2 MN/m ), the above technique m a y  fai l .  Generat ion of a P R  of 5. 5 j.n &his 

c i rcumstance ,  based  upon design motor  chamber  p r e s s u r e ,  i s  not feas ible  
In  this event, i t  m a y  b e  neces sa ry  to place  the  ign i te r  a t  an  s": g r e a t e r  
than 2. 0, and te rmina te  igni ter  action quickly, poss ibly  before  lift-off, 

All of the above discuss ion presupposes  the  exis tence of a valid 
operating map.  Before  undertaking the p r e l im ina ry  design of a sy s t em,  
i t  i s  advisable to conduct a min imum of two t e s t s  of a subsca le  configu- 
ra t ion  with the propellant  of the fu l l - sca le  sys tem.  T e s t  a t  e+' values  of 
1 . 6  and 2 .  0 wil l  probably be  sufficient to de te rmine  the location of the l ines  
of ini t ial  unblocking and onset  of osci l la t ions ,  a s  wel l  a s  the sever i ty  of the 
oscil lat ions.  I t  i s  emphasized that these  t e s t s  m u s t  be  pe r fo rmed  with high- 
f r  equency-respons e ins t rumentat ion.  



4 . 0  CONCLUSIONS 

Exper imental  and analytical  studies w e r e  conducted to invest igate  aft- 
end igni ter  - and motor  -nozzle oscil lat ion and blockage behavior during the 
pos t-ignition period.  Significant r e s u l t s  of the study included: 

(1  ) Charac te r iza t ion  of ign i te r -  and motor-nozzle  flow interact ions .  

(2) Definition of techniques which can  be  u sed  to avoid o r  suppress  
dangerous motor-nozzle  p r e s s u r e  oscil lat ions.  

( 3 )  Determination of igni ter-nozzle  misal ignment  effects.  

(4) Determination of nozzle in teract ions  a t  the aftward igni ter  loca-  
tions encountered during booster  lift-off. 

(5) Development of models  which can  be  u sed  to approximate  the 
c r i t i ca l  design and position p a r a m e t e r s  a t  in i t ia l  and final  
motor  -nozzle unblocking. 

(6) Establ ishment  of genera l  guidelines fo r  successful  aft-end 
igni ter  design and placement.  

The  following paragraphs  p r e sen t  conclusions pertaining to each  of the 
above r e su l t s :  

CHARACTERIZATION O F  NOZZLE INTERACTIONS 

The aft-end cold-flow exper iments  indicated blockage and osc i l l a to ry  
behavior s imi l a r  to that i n  the solid-propellant  motor  t es t s .  F o r  a given 
design configuration, the blocking and oscil lat ion events can be  mapped by 
us ing t h e  two pr incipal  des ign and placement var iab les ,  i. e. , igni ter  to 
motor  chamber  p r e s s u r e  r a t i o  ( P R )  and igni ter  position. The  re la t ionship  
of these  mapped events i s  defined by the constraining motor-nozzle  flow and 
by subsequent operat ion of the overexpanded igni ter  i n  o r  between two bas ic  
modes  (Mode A o r  Mode B).  Mode A i s  charac te r ized  by a s table  mult iple-  
igni ter-shock s t ruc tu r e  with a high total p r e s s u r e  l o s s  and re la t ively  sma l l  
penetra t ion distance.  Mode B i s  charac te r ized  by an  unstable single-shock 
o r  subsonic-flow s t ruc tu r e  with a low total p r e s s u r e  l o s s  and a re la t ively  
l a r g e  penetra t ion distance.  The  f i r s t  o r  in i t ia l  unblocking (choking) of the 
motor  nozzle throat  a t  high P R ' s  always occu r s  with the ign i te r  operating 
i n  Mode A. Reblocking a t  low and in te rmedia te  c2: values occu r s  when the 
igni ter  t ransi t ions  to Mode B operation.  Final  unblocking occu r s  when the 
igniter  i s  operating i n  Mode B. The large-ampli tude nozz le -pressure  osc i l -  
la t ions  are caused by t ransient  operation of the igni ter  flow between Mode A 
and Mode B s t ruc tu r e s .  



OSCILLATION CONTROL 

Motor -nozzle  blockage and oscil lat ions can  b e  avoided by proper  se lec -  
tion and control  of the P R  and by proper  igni ter  placement.  Alternatively,  
the osci l la t ions  can  b e  suppressed  by  u s e  of an  igni ter  nozzle with a s t e p  cut 
into the exit cone. Use  of the l a t t e r  technique should be  made  with caution, 
s ince  the effect of the s tep  upon ignition i s  unknown. 

4 . 3  MISALIGNMENT AND LIFT-OFF  

Misalignment of the igni ter  does not change the blockage and osc i l -  
l a t o r y  mapping cha rac t e r i s t i c  if  l a t e r a l  misal ignment  i s  l imi ted  to 3 percent  
of the motor - th roa t  d iamete r ,  and the angular component i s  kept below 1 .  5' 
(0. 0262 r ad ) .  

J, 

At high s' '  values  represen ta t ive  of lift-off, the motor -nozz le  osci l -  
la t ions  a r e  g rea t ly  attenuated. The  region (PR vs  e") of s table  unblocked 
flow a t  these  higher e'" values i s  g rea t ly  inc reased .  

4 .4 ANALYTICAL MODELS 

The ini t ia l  unblocking model  provides  a c lose  predic t ion of the in i t ia l  
unblocking P R  and c": fo r  a l l  a i r  models  with nozzle-expansion r a t i o s  of 
7. 0 : l  and l e s s .  At higher expansion r a t i o s ,  neither the a i r  nor l ive  p ro-  
pellant  cor re la t ions  w e r e  adequate. Hot-firing data  a t  low expansion r a t i o s  
w e r e  not available to a s s e s s  the validity of the in i t ia l  unblocking analysis  
a t  these  conditions. The  final  unblocking model p r e sen t s  a conservat ive  
predic t ion of the P R  and e'l' values a t  f inal  unblocking for  a l l  models  and 
the solid-propellant  t es t  data.  Ef for t s  to develop a n  osci l la t ion onset  model  
w e r e  not success fu l ,  although the significance of the bow- shock total p r e s s u r e  
l o s s  was  established.  Cr i t i ca l  a r e a s  requir ing fu r ther  work  w e r e  identified. 

4. 5 DESIGN GUIDELINES 

Cr i t i c a l  fea tu res  of the blockage and oscil lat ion operating map  should 
b e  exper imental ly  es tabl ished before  f inal  igni ter  des ign and placement deta i ls  
a r e  se lected.  F o r  f a s t  ignition the igni ter  chamber  p r e s s u r e  should be  rnaxi- 
m i z  ed within blockage and oscil lat ion constra ints  and the igni ter  nozzle expan- 
s ion r a t i o  should b e  se lec ted  to give near-ambient  p r e s s u r e  a t  the exit.  The 
igni ter  should b e  located a t  a high enough e'" value so  that reblocking i n  
Mode B will  not occur .  





APPENDIX 

INITIAL UNBLOCKING ANALYSIS 

A. Objective 

The purpose  of the analysis  and computer  p r o g r a m  i s  to predic t  the 
ign i te r -motor  chamber  p r e s s u r e  ra t io  ( P R )  a t  which the ma in  motor  throat 
becomes  choked o r  unblocked i n  Mode A flow. F r o m  examination of the 

.f, 

exper imental  data,  i t  i s  concluded that, f o r  c"'  values above some  lower 
l im i t ,  the motor  throat  plane i s  not penetra ted o r  d i s tu rbed  by the igni ter  
jet a t  in i t ia l  unblocking. The  boundary of the r eve r s ing  igni ter  jet causes 
a constr ic t ion of the ma in  flow against  the nozzle wall ,  resul t ing i n  a 
secondary  throat  which i s  choked o r  sonic. In the normal  cou r se  of' a  
decreas ing  P R ,  the unblocking event occu r s  when the a r e a  of the  secondary 
throat  i n c r e a s e s  sufficiently to allow the m a i n  throat  to choke o r  decouple 
f r o m  the downstream interact ions .  It  can be a s sumed  that l o s se s  i n  total 
p r e s s u r e  between the ma in  throat  and secondary throat  a r e  negligible. 
Thus the two throats  m u s t  be  equal i n  a r e a  a t  the ins tant  of unblocking. 

This  i s  the ma jo r  supposition upon which the init ial  unblocking anal-  
ysis  i s  based.  The  model  a t tempts  to recons t ruc t  the s t ruc tu r e  of the fully 
flowing igni ter  jet i n  i t s  shock adjustment to the total p r e s s u r e  of the main  
s t r e a m ,  i n  the l a t e r a l  expansion o r  compress ion  of the jet to adjust  to the 
cavity p r e s s u r e ,  and i n  the subsequent subsonic t u rn  of the jet whicli pro- 
duces the second constr ic t ion of the ma in  flow equal to i t s  c r i t i c a l  a r e a .  

B. Analytical Development 

The control  volume of the analysis  i s  shown i n  F i g u r e  66. The or igin  
of the x-y coordinate sy s t em i s  located a t  the i n t e r s ec t i on  of the projected 
nozzle wall  and the sy s t em center l ine ,  although the coordi.nates a r e  some-  
t imes  t rans formed for  convenience. 

The  ma jo r  assumptions  upon which the analysis  i s  based  a r e  a s  follows: 

(1 )  Both s t r e a m s  a r e  adiabatic and behave a s  perfect  ga se s .  

( 2 )  T h e  flows a r e  inviscid.  

( 3 )  The s t r e a m s  exper ience no total p r e s s u r e  l o s s e s  and obey 
isentropic  re la t ions  except that the igni ter  flow undergoes  
one normal  shock which has  a total  p r e s s u r e  r a t i o  equal to 
P R ,  the r a t i o  between ign i te r  and motor  chamber  ( to ta l )  
p r e s s u r e s .  



(4) Downstream of the igni ter  normal  shock, the flows i n  the 
motor  nozzle, whether they mix  to some  deg ree  o r  r e m a i n  
completely s epa ra t e ,  a r e  a t  a uniform total p r e s s u r e  which 
i s  equal to motor  chamber  total p r e s s u r e .  

(5) T h e  nozzle wall  p r e s s u r e  between ma in  and secondary throat  
i s  uniformly equal to motor  c r i t i ca l  p r e s s u r e .  

(6) The  igniter  jet obeys one-dimensional  i s  entropic re la t ions  
up to the jet exit,  f r o m  whence i t  i s s u e s  a s  sou rce  o r  r ad i a l  
flow. 

( 7 )  Even though the jet Mach number,  i n  fact ,  m a y  va ry  along the 
normal  shock because  of the effects of the oblique expansion 
o r  compress ion  waves f r o m  the jet exit,  the total p r e s s u r e  
behind the shock i s  everywhere  equal to that on the cen t e r -  
l ine  o r  stagnation s t reaml ine .  

(8) At the secondary throat ,  the flow p a s s e s  through a sonic point, 
so  that the derivative of the flow a r e a  with r e spec t  to flow 
direct ion i s  ze ro .  There fore ,  the flow s t r eaml ines  a t  that 
sonic sur face  only a r e  a s sumed  to follow a family  of hyper -  
bolas which have the p roper ty  that the flow a r e a  between two 
adjacent hyperboloids of revolution i s  everywhere  equal. 

I shock wave 

F i g u r e  66. Schematic of Analytical Flow F ie ld  



The  s t ruc tu r e  of the igni ter  jet downs t ream of i t s  exit was  modeied 
af ter  the observat ions  of Charwat l1  of the in te rac t ions  between je ts  and  
opposed supersonic  s t r e a m s .  The  normal  shock was  s e e n  to b e  planar  out 
to a rad ius  approximately  equal to the jet exit  r ad ius .  F r o m  that point i t  
swept around a near c i r cu l a r  a r c ,  wi th  cen te r  of the a r c  a t  the jet exit lip. 
It was  so  modeled i n  this analysis .  Charwat ' s  analys is  indicated that the 
subsonic tu rn  of the jet boundary behind the shock was  of z e r o  rad ius  of 
curva ture .  However,  provis ion was  included i n  the p r o g r a m  for  specifying 
a finite rad ius  on the boundary turn.  

Calculation P r o c e d u r e  . 

(1 )  A table of a r e a s  i s  const ructed by numerical ly  summing the 
normal  c ross - sec t iona l  flow a r e a  between the ma in  nozzle cone 
and a family  of hyperboloids of revolution about the x -ax i s ,  
having the equation 

y = tan  e n  (x2 - a 2 )  

The  summation proceeds  f r o m  the wall inward,  with a 
inc reas ing  f r o m  z e r o  by a specified increment .  Each  
incrementa l  a r e a  between two hyperboloids i s  ca lcula ted 
a s  the sur face  of a truncated cone, and added to the p r e -  
vious total. 

(2 )  A s e r i e s  of geomet r ic  p a r a m e t e r s  i s  calculated,  based 
upon the input geomet ry  and input s'". 

( 3 )  A t r i a l  value of P R  i s  se lected and the normal  shock Mach 
number i s  calculated by i t e ra t ion  of the re la t ion 

(4)  T h e  a r e a  r a t i o  (Ash/Aie) of the shock wave i s  calculated 
f r o m  the one-dimensional  i sentropic  re la t ion,  and the shock 
standoff d is tance i s  de te rmined  f r o m  the sou rce  flow 
relat ionship:  

whe re  x sh  i s  an  input p a r a m e t r i c  mul t ip l ier  u sed  to evaluate 
the effect of shock standoff d is tance.  



(5) A t r i a l  value of the cavity p r e s s u r e ,  Pb ,  i s  se lected;  the 
edge tu rn  of the jet boundary i s  ca lcula ted f r o m  the P rand t l -  
Meyer re la t ions;  the in te r sec t ion  of the  shock wave and the 
boundary and the following boundary rad ius  tu rn  i s  determined.  

(6) The  value a i s  determined f o r  the hyperbola which i s  tangent 
to the boundary c i r cu l a r  a r c ,  and the value of the a r e a  As i s  
determined by interpolation of the s t o r ed  table of As v s  a .  
As i s  then compared  wi th  the sonic a r e a  of the combined flows: 

A new value of Pb i s  se lected and s teps  (5)  and ( 6 )  a r e  
repea ted  until the combined flow i s  just choked when As 
equals Asonic. 

(7) The s t r e a m  impulse  function a c r o s s  the secondary sonic  
throat  i s  calculated f r o m  

whe re  dAs i s  the conical  su r face  a r e a  between two adjacent 
hyperbolas and xmf i s  a multiplying fac tor  l e s s  than 1. 0 
used  to adjust  the momentum balance. 

(8) A new value of Pb i s  calculated f r o m  the momentum balance 
of the control  volume: 

whe re  



( 9 )  The  values of Pb ,  one calculated f r o m  the jet expansion o r  
compress ion  and one calculated f r o m  the momentum equation, 
a r e  compared  and s teps  (3) through ( 9 )  a r e  repea ted  until the 
two a r e  equal. The P R  which sa t i s f i es  this  condition i s  the 
solution value. 

C. P r o g r a m  Input and Output 

The  p r o g r a m  input i s  s imple ,  and provides  fo r  the generat ion of a 
l a r g e  s e t  of p a r a m e t r i c  data. 

C a r d  1 

C a r d  2 

Indicator in tegers  M, J, KK, L 9 

C a r d s  3 and 4 

M values  of e''' 
M values  of es t imated  P R  values  corresponding to the e'k values, 

C a r d  5 

J values of the rad ius ,  R ,  of the subsonic t u rn  of the igni ter  
jet boundary. 

C a r d  6 

KK values  of xSf ,  the shock standoff-distance factor .  

C a r d  7 

L values of xmf, the secondary- throat  impulse-function factor 

The  p r o g r a m  calcula tes  through four DO loops,  i n  the following o r d e r :  

(M t i m e s )  



The output data consis ts  of the input s e t  of C a r d  1, the table of the annular 
a r e a s  between the nozzle wall  and the hyperboloids of revolution,  and for  
each  s epa ra t e  c a s e  a r e  pr inted 40 geomet r ic  and gasdynamical  p a r a m e t e r s .  

D. Validity of the Analysis  

The  analysis  a g r e e s  well  wi th  the exper imental  r e su l t s  for  a i r  ign i te r  
expansion r a t i o s  equal to o r  l e s s  than 7, f o r  the following f ac to r s :  

At higher expansion ra t ios  fo r  both a i r  and l ive  propellant  exhaust  the ag ree -  
m-ent i s  not sa t is factory.  The  only pa rame te r  which appea r s  to improve  the 
agreement  i s  the shock standoff fac to r ,  indicating that perhaps  the assumption 
of sou rce  flow o r  the s t ruc tu r e  of the shock shape a r e  not c o r r e c t  for  the 
higher igni ter  expansion ra t ios .  In  the absence of flow visualization of the 
in te rac t ions  there  s e e m s  to be no way i n  which these  f ac to r s  m a y  be evaluated. 

It i s  known that the p r e sence  of condensed phases  i n  a gas  s t r e a m  can  
have a profound effect upon the behavior of the s t r e a m ,  especia l ly  one which 
exper iences  s e v e r e  s t r eamwise  and t r ansve r se  momentum changes.  It i s  
the re fore  expected that the analysis  i s  l e s s  valid fo r  a mult iphase s t r e a m  
than for a pu re  gas ,  although the overa l l  effect of the condensed phase  should 
diminish a s  the s i ze  of the sy s t em i n c r e a s e s .  



SYMBOLS 

Hyperbola in te rcep t  on x-ax i s  
A r e a  
Diameter  
S t r  earn impulse  function 
Normal ized s t r e a m  impulse  function 
Mach  number 
Molecular weight 
Pr e s  s u r e  
Igni ter  chamber  p r e s s u r e / m o t o r  chamber  p r e s s u r e  
Radius 
Radius of subsonic jet boundary tu rn  
Secondary throat  sur face  
T i m e  
T e m p e r a t u r e  
Mass  flow r a t e  
Axial d is tance 
Multiplying factor  on momentum t e r m  
Multiplying factor  on shock standoff d is tance 
L a t e r a l  o r  rad ia l  d is tance 

A Normal ized bow shock standoff d is tance 
E Nozzle expansion r a t i o  
.!, 

€. 'I. Igni ter  placement pa r ame te r  

Y Ideal  gas  r a t i o  of specific heats  
0 Nozzle half - angle 

Flow direct ion angle 

-1- ,,. Flow c r i t i c a l  (sonic)  conditions 

o Stagnation 

Subscr ipts  

Annulus 
2 Conditions before  and af ter  shock wave 

Igniter  b a s e  cavity 
Nozzle exit 
Flow 
Igniter  
Motor 



SYMBOLS (concluded) 

Subscr ipts  (concluded) - 

Nozzle 
Nominal 
S ta r t  of t ime sequence 
Secondary throat  su r f ace  
Shock wave 
Slant ar ea  
Nozzle throat  

Wall 
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